Durable Resistance to Leaf Rust (Puccinia recondita f.sp. tritici) and Powdery Mildew (Erysiphe graminis f.sp. tritici) in Italian Durum Wheat Cultivars

Author(s):  
M. Pasquini ◽  
F. Casulli
2014 ◽  
Vol 104 (12) ◽  
pp. 1322-1328 ◽  
Author(s):  
Alexander Loladze ◽  
Dhouha Kthiri ◽  
Curtis Pozniak ◽  
Karim Ammar

Leaf rust, caused by Puccinia triticina, is one of the main fungal diseases limiting durum wheat production. This study aimed to characterize previously undescribed genes for leaf rust resistance in durum wheat. Six different resistant durum genotypes were crossed to two susceptible International Maize and Wheat Improvement Center (CIMMYT) lines and the resulting F1, F2, and F3 progenies were evaluated for leaf rust reactions in the field and under greenhouse conditions. In addition, allelism tests were conducted. The results of the study indicated that most genotypes carried single effective dominant or recessive seedling resistance genes; the only exception to this was genotype Gaza, which carried one adult plant and one seedling resistance gene. In addition, it was concluded that the resistance genes identified in the current study were neither allelic to LrCamayo or Lr61, nor were they related to Lr3 or Lr14a, the genes that already are either ineffective or are considered to be vulnerable for breeding purposes. A complicated allelic or linkage relationship between the identified genes is discussed. The results of the study will be useful for breeding for durable resistance by creating polygenic complexes.


2020 ◽  
Author(s):  
Xian Xin Wu ◽  
Yue Gao ◽  
Qiang Bian ◽  
Qian Sun ◽  
Xin Yu Ni ◽  
...  

Abstract Background: Wheat powdery mildew, caused by the biotrophic fungus Blumeria graminis f. sp. tritici ( Bgt ), is a serious disease of wheat worldwide that can cause significant yield losses. Growing resistant cultivars is the most cost-effective and eco-soundly strategy to manage the disease. Therefore, a high breeding priority is to identify genes that can be readily used either singly or in combination for effective resistance to powdery mildew and alos in combination with genes for resistance to other diseases. Yunnan Province, with complex and diverse ecological environments and climates, is one of the main wheat growing regions in China. This region provides initial inoculum for starting epidemics of wheat powdery mildew in the region and other regions and thus, plays a key role in the regional and large-scale epidemics of the disease throughout China. The objectives of this study were to evaluate seedling resistance of 69 main wheat cultivars to powdery mildew and to determine the presence of resistance genes Pm3 , Pm8 , Pm13 , Pm16 , and Pm21 in these cultivars using gene specific DNA markers. Results: Evaluation of 69 wheat cultivars with six Bgt isolates showed that only four cultivars were resistant to all tested isolates, indicating that the overall level of powdery mildew resistance of Yunnan wheat cultivars is inadequate. The molecular marker results showed that 27 cultivars likely have at least one of these genes. Six cultivars were found likely to have Pm3 , 18 likely to have Pm8 , 5 likely to have Pm16 , and 3 likely to have Pm21 . No cultivar was found to carry Pm13 . Conclusion: The information on the presence of the Pm resistance genes in Yunnan wheat cultivars can be used in future wheat disease breeding programs. In particular, cultivars carrying Pm21 , which is effective against all Bgt races in China, should be pyramided with other effective genes to developing new cultivars with durable resistance to powdery mildew. Keywords: Blumeria graminis f. sp. tritici , Pm gene, molecular markers, wheat


2007 ◽  
Vol 47 (12) ◽  
pp. 1422 ◽  
Author(s):  
U. K. Behera ◽  
A. N. Mishra ◽  
H. N. Pandey

Soybean [Glycine max (L.) Merr.]–wheat (Triticum aestivum L.) is the common cropping system in the Vertisols of central India. High temperatures prevailing during the reproductive phase and leaf rust infection of the late-planted wheat crop affect the grain yield adversely. In the soybean–potato–wheat cropping system, which has recently become more popular, wheat is sown very late, so high temperature stress is a major concern. Understanding of the response of very late-sown durum and bread wheat to high temperature stress during grain filling will assist breeders in genotype improvement and development of best agronomic management practices for promotion of very late-sown wheat cultivation in the region. Information is lacking on the response of durum and bread wheat to leaf rust and heat stress under very late-sown situations. Field experiments were conducted for three consecutive spring (January to April) seasons, from 1996 to 1998, with 20 cultivars of durum (Triticum turgidum L. var. durum Desf.) and bread (Triticum aestivum L. emend. Fiori. and Paol.) wheat of timely and late-sown groups. The study objective was to: (i) identify durum and bread wheat cultivars suitable for very late planting in the newly established soybean–potato–wheat multiple cropping system; (ii) evaluate differential performance of durum and bread wheat under very late-sown conditions; and (iii) characterise plant traits associated with tolerance to heat stress during the grain filling period. Each year, all the cultivars were planted very late in January in lieu of normal sowing in mid-November. Compared with both the timely and late-sown groups of bread wheat cultivars, durum wheat produced an average 6% higher grain yield when sown very late. The 1000-grain weight was the most affected yield attribute under high temperature. Thus, under very late sown conditions, stable and high 1000-grain weight (45–55 g), and high harvest index (41–52%) contributed to the higher yield of durum wheat. Durum cultivar HI 8498 and bread wheat cultivars GW 173, HI 1418 and DL 788-2 of early to medium maturity and with high yields (>4.0 t/ha) and water use efficiency (12.7–14.8 kg/ha.mm) proved promising. Durum cultivars remained free from leaf rust infection, while significant yield reduction was recorded in susceptible bread wheat cultivars, particularly DL 803-3 and GW 190. This was due to severe rust infection during 1997–98, when widespread incidence of leaf rust occurred in the region. Therefore, contrary to the popular belief, late planted durum wheat may be successfully grown in the soybean–potato–wheat cropping system in central India.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e10425
Author(s):  
Xianxin Wu ◽  
Qiang Bian ◽  
Yue Gao ◽  
Xinyu Ni ◽  
Yanqiu Sun ◽  
...  

Wheat powdery mildew, caused by the biotrophic fungus Blumeria graminis f. sp. tritici (Bgt), is a serious disease of wheat worldwide that can cause significant yield losses. Growing resistant cultivars is the most cost-effective and eco-soundly strategy to manage the disease. Therefore, a high breeding priority is to identify genes that can be readily used either singly or in combination for effective resistance to powdery mildew and also in combination with genes for resistance to other diseases. Yunnan Province, with complex and diverse ecological environments and climates, is one of the main wheat growing regions in China. This region provides initial inoculum for starting epidemics of wheat powdery mildew in the region and other regions and thus, plays a key role in the regional and large-scale epidemics of the disease throughout China. The objectives of this study were to evaluate seedling resistance of 69 main wheat cultivars to powdery mildew and to determine the presence of resistance genes Pm3, Pm8, Pm13, Pm16, and Pm21in these cultivars using gene specific DNA markers. Evaluation of 69 wheat cultivars with six Bgt isolates showed that only four cultivars were resistant to all tested isolates, indicating that the overall level of powdery mildew resistance of Yunnan wheat cultivars is inadequate. The molecular marker results showed that 27 cultivars likely have at least one of these genes. Six cultivars were found likely to have Pm3,18 likely to have Pm8,5 likely to have Pm16,and 3 likely to have Pm21. No cultivar was found to carry Pm13. The information on the presence of the Pmresistance genes in Yunnan wheat cultivars can be used in future wheat disease breeding programs. In particular, cultivars carrying Pm21, which is effective against all Bgtraces in China, should be pyramided with other effective genes to developing new cultivars with durable resistance to powdery mildew.


1977 ◽  
Vol 55 (11) ◽  
pp. 1539-1543 ◽  
Author(s):  
G. D. Statler ◽  
J. T. Nordgaard ◽  
J. E. Watkins

Several durum wheat (Triticitm durum) cultivars exhibiting susceptible or moderately susceptible reactions to the leaf rust fungus (Puccinia recondita tritici) were evaluated for slow rusting. Percentage severity and reactions for P. recondita tritici on each cultivar were evaluated periodically after initial infection. Logit analysis of disease progress curves was used to compare cultivars. The durum wheats consistently exhibited low rust severities in the field. The durums were always characterized by lower infection rates than the susceptible bread wheat cultivar Thatcher (Triticum aestivum). The area under the disease progress curve was smaller for the durum wheats than for Thatcher. The high correlation between apparent infection rate and the final rust severity indicated that final rust severity could be used as an indication of infection rate. The high correlation coefficient for the apparent infection rate between the two top leaves indicated that either leaf would provide an accurate evaluation of the cultivar. Yields of the durum wheat cultivars were not increased by controlling leaf rust. Yields of the susceptible bread wheat cultivar Thatcher were significantly increased by controlling leaf rust. The slow rusting displayed by the durum wheat cultivars studied apparently provide adequate protection against leaf rust under North Dakota conditions.


1977 ◽  
Vol 19 (2) ◽  
pp. 355-358 ◽  
Author(s):  
P. L. Dyck ◽  
E. R. Kerber

The inheritance of seedling resistance to leaf rust (Puccinia recondita) was studied in wheat (Triticum aestivum L.) cultivars Rafaela and EAP 26127. Rafaela has genes Lr14b and Lr17 while EAP 26127 has Lr17. Lr17 was located on chromosome 2A, possibly the short arm, and was independent of Lr11.


Genome ◽  
1989 ◽  
Vol 32 (5) ◽  
pp. 913-917 ◽  
Author(s):  
Y. Tosa

F1 hybrid cultures between Erysiphe graminis f.sp. agropyri (wheatgrass mildew fungus) and E. graminis f.sp. tritici (wheat mildew fungus) were produced by using a common host of the two formae spéciales. When three common wheat cultivars, Triticum aestivum cv. Norin 4, T. aestivum cv. Norin 10, and T. compactum cv. No. 44, were inoculated with a population of F1 cultures, avirulent and virulent cultures segregated in a 3:1 ratio. This indicated that two major genes are involved in the avirulence of E. graminis f.sp. agropyri, Ak-1, on each of the three cultivars. Further analyses revealed that the three pairs of avirulence genes have one gene in common. On T. aestivum cv. Shin-chunaga, T. aestivum cv. Norin 26, and a strain of T. macha, the F1 population segregated in the same pattern as on T. aestivum cv. Norin 4, indicating that the same pair of avirulence genes is operating on these four cultivars. On T. aestivum cv. Red Egyptian the distribution of F1 phenotypes was continuous, suggesting that no major genes are involved in the avirulence of Ak-1 on this cultivar.Key words: powdery mildew, Erysiphe graminis, avirulence, wheat, wheatgrass.


Sign in / Sign up

Export Citation Format

Share Document