Morphology and Isotopic Age of Zircons from Shear-Zones within Granitoids of the Belomorian Tectonic Zone, Baltic Shield, Russia

Author(s):  
T. F. Zinger ◽  
V. S. Baikova ◽  
B. V. Belyatsky ◽  
S. V. Klepinin ◽  
J. Götze ◽  
...  
2000 ◽  
Vol 37 (2-3) ◽  
pp. 183-192 ◽  
Author(s):  
D J White ◽  
D A Forsyth ◽  
I Asudeh ◽  
S D Carr ◽  
H Wu ◽  
...  

A schematic crustal cross-section is presented for the southwestern Grenville Province based on reprocessed Lithoprobe near-vertical incidence seismic reflection data and compiled seismic refraction - wide-angle velocity models interpreted with geological constraints. The schematic crustal architecture of the southwest Grenville Province from southeast to northwest comprises allochthonous crustal elements (Frontenac-Adirondack Belt and Composite Arc Belt) that were assembled prior to ca. 1160 Ma, and then deformed and transported northwest over reworked rocks of pre-Grenvillian Laurentia and the Laurentian margin primarily between 1120 and 980 Ma. Reworked pre-Grenvillian Laurentia and Laurentian margin rocks are interpreted to extend at least 350 km southeast of the Grenville Front beneath all of the Composite Arc Belt. Three major structural boundary zones (the Grenville Front and adjacent Grenville Front Tectonic Zone, the Central Metasedimentary Belt boundary thrust zone, and the Elzevir-Frontenac boundary zone) have been identified across the region of the cross-section based on their prominent geophysical signatures comprising broad zones of southeast-dipping reflections and shallowing of mid-crustal velocity contours by 12-15 km. The structural boundary zones accommodated southeast over northwest crustal stacking at successively earlier times during orogeny (ca. 1010-980 Ma, 1080-1060 Ma, and 1170-1160 Ma, respectively). These shear zones root within an interpreted gently southeast-dipping regional décollement at a depth of 25-30 km corresponding to the top of a high-velocity lower crustal layer.


2021 ◽  
Vol 38 (1) ◽  
pp. 75-92
Author(s):  
Shradha Shukla

Betul belt, ENE-WSW trending, 135 km long, prominent litho-tectonic unit exposed in the central part of Central Indian Tectonic Zone (CITZ) is composed of meta-sedimentary & meta-volcanic rocks intruded by mafic-ultramafic and granitic suite of rocks, belonging to Palaeoproterozoic to Neoproterozoic age. This belt is traversed by several ENE-WSW trending, sub-vertical ductite shear zones. The meta-sedimentary rocks of Sonaghati Formation were geochemically characterized and their geochemical composition was interpreted for provenance characterization and paleo-environmental assessment. The weathering indices including Chemical index of Alteration, Chemical index of Weathering, Plagioclase Index of Alteration and Weathering Index of Parker indicate that theses meta-sedimentary rocks have witnessed the substantial amount of weathering at the source without any evidence of potash metasomatism. The Bivariate plots using the major and trace element composition show co-linear trends, which reflect that all these samples belong to co-genetic population and the visible compositional variation could be attributed to chemical, mineralogical and textural maturity. The Sonaghati metasedimentary rocks are enriched in REE with negative Eu anomaly. The LREE enrichment varies from 122 to 174 times and that of the HREE enrichment ranges from 12 to 31 times of Chondrite indicating highly varied protoliths. The provenance characterization was attempted using the large ion lithophile elements and high field strength elements. The results show that the precursor for these meta-sedimentary litho-units are mixed source with the major contributor being felsic to intermediate and minor contribution has come from the mafic end members. These meta-sedimentary rocks were deposited in the overall semi arid climate with a sequential transition, suggesting the variable climatic conditions ranging from semi-arid to arid. The Cu/Zn, V/Cr ratios, and presence of pyrites dissemination and stringers eventually indicate the prevalence of reducing environmental conditions during the deposition of these meta-sediments.


1994 ◽  
Vol 31 (8) ◽  
pp. 1287-1300 ◽  
Author(s):  
Simon Hanmer ◽  
Randy Parrish ◽  
Michael Williams ◽  
Chris Kopf

The geophysically defined Snowbird tectonic zone is manifested in northernmost Saskatchewan as a deep-crustal, multistage mylonitic structure, the East Athabasca mylonite triangle. The triangle, located at the northeastern apex of a stiff, crustal-scale "lozenge," is composed of mid-Archean annealed mylonites and late Archean ribbon mylonites, formed during two granulite facies events (850–1000 °C, 1.0 GPa). The flow pattern in the mylonites is geometrically and kinematically complex, and corresponds to that expected adjacent to the apex of a stiff elliptical volume subjected to subhorizontal regional extension parallel to its principal axis. The late Archean mylonites are divided into an upper structural deck, entirely occupied by a dip-slip shear zone, and an underlying lower deck. The latter is divided into two upright conjugate strike-slip shear zones, separated by a low-strain septum, which deformed by progressive coaxial flow. The flow pattern in the mid-Archean mylonites is compatible with that of the late Archean mylonites, and suggests that the crustal-scale lozenge influenced deformation since the mid-Archean. In the interval ca. 2.62–2.60 Ga, deformation in the upper and lower decks evolved from a granulite facies pervasive regime to a more localized amphibolite facies regime. With further cooling, deformation was localized within very narrow greenschist mylonitic faults at the lateral limits of the lower deck. By the late Archean, the East Athabasca mylonite triangle was part of a deep-crustal, intracontinental shear zone. This segment of the Snowbird tectonic zone was not the site of an Early Proterozoic suture or orogen.


2012 ◽  
Vol 445 (1) ◽  
pp. 821-825 ◽  
Author(s):  
V. A. Glebovitskii ◽  
S. A. Bushmin ◽  
E. S. Bogomolov ◽  
B. V. Belyatskii ◽  
E. V. Savva ◽  
...  

2000 ◽  
Vol 37 (1) ◽  
pp. 95-114 ◽  
Author(s):  
P Neumayr ◽  
S G Hagemann ◽  
J -F Couture

In the Val d'Or camp, Archean Abitibi greenstone belt, Canada, numerous gold-mineralized second- and third-order fault zones are spatially associated with the transcrustal Cadillac Tectonic Zone (CTZ). This situation is used to test whether fluid systems in the CTZ have a similar structural timing to those in the gold-hosting structures, and hence the CTZ could represent the main fluid conduit in the camp. The transcrustal CTZ at Orenada No. 2 contains structurally complex vein systems, with mineralized quartz-tourmaline veins related to both D2 oblique-reverse faulting and F3 dextral asymmetric folding, both of which have been overprinted by unmineralized subhorizontal and subvertical quartz veins. Quartz ± tourmaline veins within second- and third-order shear zones at Paramaque and Rivière Héva also formed during D2 deformation and have been, at least at Rivière Héva, deformed by F3 asymmetric folding. In contrast, mineralized quartz vein systems at Cartier Malartic are controlled by F3 folding and overprinted by late-stage D3 faults which host late quartz-tourmaline veins. Quartz vein textures are consistent with these timing relations, because D2-controlled veins contain deformed quartz grains, whereas quartz in D3-controlled veins is unstrained. The D2 and D3 timing of mineralized quartz veins in the transcrustal CTZ and in second- and third-order structures is consistent with the notion that the CTZ represents the main fluid conduit and that mineralization occurred in linked second- and third-order structures. The different timing of quartz-tourmaline veins in different shear zones indicates that the veins were probably hydraulically linked to the CTZ during at least two different episodes. The location of Cartier Malartic structurally below the CTZ indicates that fluids travelled either downward from the main conduit or that the shear zone was part of the CTZ.


Petrology ◽  
2014 ◽  
Vol 22 (2) ◽  
pp. 184-204 ◽  
Author(s):  
V. A. Glebovitskii ◽  
S. A. Bushmin ◽  
B. V. Belyatsky ◽  
E. S. Bogomolov ◽  
A. P. Borozdin ◽  
...  

1996 ◽  
Vol 33 (6) ◽  
pp. 831-847 ◽  
Author(s):  
D. L. Southwick ◽  
Val W. Chandler

The Minnesota River Valley subprovince of the Superior Province is an Archean gneiss terrane composed internally of four crustal blocks bounded by three zones of east-northeast-trending linear geophysical anomalies. Two of the block-bounding zones are verified regional-scale shears. The geological nature of the third boundary has not been established. Potential-field geophysical models portray the boundary zones as moderately north-dipping surfaces or thin slabs similar in strike and dip to the Morris fault segment of the Great Lakes tectonic zone at the north margin of the subprovince. The central two blocks of the subprovince (Morton and Montevideo) are predominantly high-grade quartzofeldspathic gneiss, some as old as 3.6 Ga, and late-tectonic granite. The northern and southern blocks (Benson and Jeffers, respectively) are judged to contain less gneiss than the central blocks and a larger diversity of syntectonic and late-tectonic plutons. A belt of moderately metamorphosed mafic and ultramafic rocks having some attributes of a dismembered ophiolite is partly within the boundary zone between the Morton and Montevideo blocks. This and the other block boundaries are interpreted as late Archean structures that were reactivated in the Early Proterozoic. The Minnesota River Valley subprovince is interpreted as a late accretionary addition to the Superior Province. Because it was continental crust, it was not subductible when it impinged on the convergent southern margin of the Superior Craton in late Archean time, and it may have accommodated to convergent-margin stresses by dividing into blocks and shear zones capable of independent movement.


2013 ◽  
Vol 734-737 ◽  
pp. 215-218
Author(s):  
Guo Rui Zhang ◽  
Jiu Hua Xu ◽  
Li Hua Shan ◽  
Hui Zhang ◽  
Xiao Feng Wei

The Saidu gold deposit is located in the northwest part of Ertix Tectonic Zone in Xinjiang. The ore bodies occur in altered mylonite zones within the Mar-kakol giant fault zone and are controlled by the ductile shear zone. The structural-metallogenic fluids of the early stage are characterized by mesothermal-hydrothermal CO2-N2-rich fluids, with homogenization temperatures of fluid inclusions being 252~408°C. The tectonic-metallogenic fluids at the middle stage are characterized by CO2-H2O fluids, with homogenization temperatures being 203~326°C. The fluids at the late stage were epithermal-mesothermal low salinity aqueous solutions, with homogenization temperatures being 120~221°C. The main gold mineralization was related to the post-orogenic extension environment, with the evolution characteristics corresponding to the evolution of shear zones.


Sign in / Sign up

Export Citation Format

Share Document