Managing Water Resources for Adaptation to Climate Change

Author(s):  
Eugene Z. Stakhiv
2021 ◽  
Author(s):  
Francis Chiew ◽  
Hongxing Zheng ◽  
Jai Vaze

<p>This paper addresses the implications of UPH19 in extrapolating hydrological models to predict the future and assessing water resources adaptation to climate change. Many studies have now shown that traditional application of hydrological models calibrated against past observations will underestimate the range in the projected future hydrological impact, that is, it will underestimate the decline in runoff where a runoff decrease is projected, and underestimate the increase in runoff where a runoff increase is projected. This study opportunistically uses data from south-eastern Australia which recently experienced a long and severe drought lasting more than ten years and subsequent partial hydrological recovery from the drought. The paper shows that a more robust calibration of rainfall-runoff models to produce good calibration metrics in both the dry periods and wet periods, at the expense of the best calibration over the entire data period, can produce a more accurate estimate of the uncertainty in the projected future runoff, but cannot entirely eliminate the modelling limitation of underestimating the projected range in future runoff. This is because of the need to consider trade-offs between the calibration objectives, particularly in simulating the dry periods, versus enhanced bias that results from the consideration. Hydrological models must therefore also need to be adapted to reflect the non-stationary nature of catchment and vegetation responses in a changing climate under warmer conditions, higher CO<sub>2</sub> and changed precipitation patterns. This is an active area of research in UPH19, and some ideas relevant to this region will be presented.</p>


Climate ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 134
Author(s):  
Sola Ojo ◽  
Henry Mensah ◽  
Eike Albrecht ◽  
Bachar Ibrahim

Climate Change (CC) and variability are global issues that the world has been facing for a long time. Given the recent catastrophic events, such as flooding, erosion, and drought in Nigeria, many have questioned institutions’ capacity in managing CC impacts in Nigeria. This study explores emerging institutional barriers of adaptation to CC effects on water resources in Nigeria. The study data were obtained from in-depth interviews with institutional heads from water resources management and emergency management and a review of secondary literature from databases such as Google Scholar, Scopus, and Web of Science. The results show that inadequate hydrological data management, low awareness on how to adapt among the public and decision-makers, financial constraints, no political will to pass important bills into law, and inadequate institutional and legal framework are the main institutional barriers of adaptation to climate change in Nigeria. The study concludes that it is essential to strengthen the institutional and legal system, information management mechanism, public awareness, and participatory water resources management. The implications for further research are presented in the study.


2019 ◽  
Vol 40 (3) ◽  
pp. 427-443 ◽  
Author(s):  
Timo Assmuth ◽  
Tanja Dubrovin ◽  
Jari Lyytimäki

AbstractHuman health risks in dealing with floods in a river basin in South-Western Finland are analysed as an example of scientific and practical challenges in systemic adaptation to climate change and in integrated governance of water resources. The analysis is based on case reports and plans, on literature studies and on conceptual models of risks and risk management. Flood risks in the Northern European study area are aggravated by melt- and storm-water runoff, ice jams and coastal flooding. Flood risk assessment is linked with management plans based on EU directives as applied in the case area. National risk management policies and procedures of increasing scope and depth have been devised for climate change, water resources and overall safety, but an integrated approach to health risks is still largely missing. The same is true of surveys of perceived flood risks, and participatory deliberation and collaborative planning procedures for flood risk management in the case area, specifically for adaptive lake regulation. Health impacts, risks and benefits, socio-economic and systemic risks, and over-arching prevention, adaptation and compensation measures are not fully included. We propose a systematic framework for these extensions. Particular attention needs to be given to health risks due to flooding, e.g. from water contamination, moist buildings, mental stress and infrastructure damage and also from management actions. Uncertainties and ambiguities about risks present continuing challenges. It is concluded that health aspects of flooding are complex and need to be better included in assessment and control, to develop more integrated and adaptive systemic risk governance.


2014 ◽  
Vol 6 (4) ◽  
pp. 451-467 ◽  
Author(s):  
Josyane Ronchail ◽  
Marianne Cohen ◽  
María Alonso-Roldán ◽  
Hélène Garcin ◽  
Benjamin Sultan ◽  
...  

Abstract The adaptability of olive-growing systems to climate change is studied in the Sierra Mágina region (Andalusia) using an interdisciplinary approach that evaluates and makes associations across climate, water resources, and socioeconomic strategies. First, the evolution of rainfall and temperature during the twenty-first century is assessed at the local scale using 17 regional climate model (RCM) simulations. A 15%–30% rainfall reduction is expected in the fall combined with a 7%–9% annual reduction by 2030–50. Based on a regression model relating yields to rainfall, residual yields (independent of the increasing trend in the present period and from the biennial fruit bearing of the olive tree) are projected to decrease by 7% and 3.5% by 2030–50 for rainfed and irrigated olive groves, respectively. Substantial uncertainties in these results are discussed. A GIS analysis shows a reduction of ground and surface water resources, which are the basis of the present adaptation to rainfall variability, and an uneven potential for adaptation to climate change in the Sierra Mágina region. Despite the important challenges faced by this rural region, there is no consensus among the local key actors regarding adaptation strategies. This is due in part to the diversity among farmers, but also to the different levels of awareness about climate change among all the stakeholders and farmers. Since the projected decline in medium-range future yields is not very high, there might be time and possibilities, especially in the northern part of the Sierra Mágina, to build a local adaptability strategy within the next 20 years that would take into account improved methods of water management and a better economic valorization of olive oil. But at longer time scales, the adaptability of the olive-growing system to yield and water resource declines seems to be threatened.


Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1239
Author(s):  
Mirindra Finaritra Rabezanahary Tanteliniaina ◽  
Md. Hasibur Rahaman ◽  
Jun Zhai

The assessment of the impacts of climate change on hydrology is important for better water resources management. However, few studies have been conducted in semi-arid Africa, even less in Madagascar. Here we report, climate-induced future hydrological prediction in Mangoky river, Madagascar using an artificial neural network (ANN) and the soil and water assessment tool (SWAT). The current study downscaled two global climate models on the mid-term, noted the 2040s (2041–2050) and long-term, noted 2090s (2091–2099) under two shared socioeconomic pathways (SSP) scenarios, SSP 3–7.0 and SSP 5–8.5. Statistical indices of both ANN and SWAT showed good performance (R2 > 0.65) of the models. Our results revealed a rise in maximum temperature (4.26–4.69 °C) and minimum temperature (2.74–3.01 °C) in the 2040s and 2090s. Under SSP 3–7.0 and SSP 5–8.5, a decline in the annual precipitation is projected in the 2040s and increased the 2090s. This study found that future precipitation and temperature could significantly decrease annual runoff by 60.59% and 73.77% in the 2040s; and 25.18% and 23.45% in the 2090s under SSP 3–7.0 and SSP 5–8.5, respectively. Our findings could be useful for the adaptation to climate change, managing water resources, and water engineering.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Bhabishya Khaniya ◽  
Miyuru B. Gunathilake ◽  
Upaka Rathnayake

The climate of Sri Lanka has been fluctuating at an alarming rate during the recent past. These changes are reported to have pronounced impacts on the livelihoods of the people in the country. Water is central to the sustainable functioning of ecosystems and wellbeing of mankind. It is evident that pronounced variations in the climate will negatively impact the availability and the quality of water resources. The ecosystem-based adaptation (EbA) approach has proved to be an effective strategy to address the impact of climate change on water resources in many parts of the world. The key aim of this paper is to elaborate the wide range of benefits received through implementation of EbAs in field level, watershed scale, and urban and coastal environments in the context of Sri Lanka. In addition, this paper discusses the benefits of utilizing EbA solutions over grey infrastructure-based solutions to address the issues related to water management. The wide range of benefits received through implementation of EbAs can be broadly classified into three categories: water supply regulation, water quality regulation, and moderation of extreme events. This paper recommends the utilization of EbAs over grey infrastructure-based solutions in adaptation to climate change in the water management sector for the developing region due its cost effectiveness, ecofriendliness, and multiple benefits received on long-term scales. The findings of this study will unequivocally contribute to filling existing knowledge and research gaps in the context of EbAs to future climate change in Sri Lanka. The suggestions and opinions of this study can be taken into account by decision makers and water resources planning agencies for future planning of actions related to climate change adaptation in Sri Lanka.


2009 ◽  
Vol 23 (14) ◽  
pp. 2965-2986 ◽  
Author(s):  
Marie Minville ◽  
François Brissette ◽  
Stéphane Krau ◽  
Robert Leconte

Sign in / Sign up

Export Citation Format

Share Document