Polymers in Solution — Flow Techniques

Author(s):  
P. Lindner
2020 ◽  
Vol 64 (1) ◽  
pp. 23-28
Author(s):  
J. Hodač ◽  
Z. Fulín ◽  
P. Mareš ◽  
J. Veselá ◽  
O. Chocholatý

AbstractTo produce realistic test specimens with realistic flaws, it is necessary to develop appropriate procedure for corrosion flaw production. Tested specimens are made from steels commonly used in power plants, such as carbon steels, stainless steels and their dissimilar weldments. In this study, corrosion damage from NaCl water solution and NaCl water mist are compared. Specimens were tested with and without mechanical bending stress. The corrosion processes produced plane, pitting and galvanic corrosion. On dissimilar weldments galvanic corrosion was observed and resulted to the deepest corrosion damage. Deepest corrosion flaws were formed on welded samples. The corrosion rate was also affected by the solution flow in a contact with the specimens, which results in a corrosion-erosive wear. Produced flaws are suitable as natural crack initiators or as realistic corrosion flaws in test specimens.


2020 ◽  
Vol 71 (1) ◽  
pp. 1-12
Author(s):  
Salman H. Abbas ◽  
Younis M. Younis ◽  
Mohammed K. Hussain ◽  
Firas Hashim Kamar ◽  
Gheorghe Nechifor ◽  
...  

The biosorption performance of both batch and liquid-solid fluidized bed operations of dead fungal biomass type (Agaricusbisporus ) for removal of methylene blue from aqueous solution was investigated. In batch system, the adsorption capacity and removal efficiency of dead fungal biomass were evaluated. In fluidized bed system, the experiments were conducted to study the effects of important parameters such as particle size (701-1400�m), initial dye concentration(10-100 mg/L), bed depth (5-15 cm) and solution flow rate (5-20 ml/min) on breakthrough curves. In batch method, the experimental data was modeled using several models (Langmuir,Freundlich, Temkin and Dubinin-Radushkviechmodels) to study equilibrium isotherms, the experimental data followed Langmuir model and the results showed that the maximum adsorption capacity obtained was (28.90, 24.15, 21.23 mg/g) at mean particle size (0.786, 0.935, 1.280 mm) respectively. In Fluidized-bed method, the results show that the total ion uptake and the overall capacity will be decreased with increasing flow rate and increased with increasing initial concentrations, bed depth and decreasing particle size.


Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 306
Author(s):  
Kazuya Taira ◽  
Tomonori Waku ◽  
Yoshimichi Hagiwara

The control of ice growth inside channels of aqueous solution flows is important in numerous fields, including (a) cold-energy transportation plants and (b) the preservation of supercooled human organs for transplantation. A promising method for this control is to add a substance that influences ice growth in the flows. However, limited results have been reported on the effects of such additives. Using a microscope, we measured the growth of ice from one sidewall toward the opposite sidewall of a mini-channel, where aqueous solutions of sodium chloride and antifreeze protein flowed. Our aim was to considerably suppress ice growth by mixing the two solutes. Inclined interfaces, the overlapping of serrated interfaces, and interfaces with sharp and flat tips were observed in the cases of the protein-solution, salt-solution, and mixed-solution flows, respectively. In addition, it was found that the average interface velocity in the case of the mixed-solution flow was the lowest and decreased by 64% compared with that of pure water. This significant suppression of the ice-layer growth can be attributed to the synergistic effects of the ions and antifreeze protein on the diffusion of protein.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Gwendolyn Williams ◽  
Suraj Thyagaraj ◽  
Audrey Fu ◽  
John Oshinski ◽  
Daniel Giese ◽  
...  

Abstract Background Phase contrast magnetic resonance imaging, PC MRI, is a valuable tool allowing for non-invasive quantification of CSF dynamics, but has lacked adoption in clinical practice for Chiari malformation diagnostics. To improve these diagnostic practices, a better understanding of PC MRI based measurement agreement, repeatability, and reproducibility of CSF dynamics is needed. Methods An anatomically realistic in vitro subject specific model of a Chiari malformation patient was scanned three times at five different scanning centers using 2D PC MRI and 4D Flow techniques to quantify intra-scanner repeatability, inter-scanner reproducibility, and agreement between imaging modalities. Peak systolic CSF velocities were measured at nine axial planes using 2D PC MRI, which were then compared to 4D Flow peak systolic velocity measurements extracted at those exact axial positions along the model. Results Comparison of measurement results showed good overall agreement of CSF velocity detection between 2D PC MRI and 4D Flow (p = 0.86), fair intra-scanner repeatability (confidence intervals ± 1.5 cm/s), and poor inter-scanner reproducibility. On average, 4D Flow measurements had a larger variability than 2D PC MRI measurements (standard deviations 1.83 and 1.04 cm/s, respectively). Conclusion Agreement, repeatability, and reproducibility of 2D PC MRI and 4D Flow detection of peak CSF velocities was quantified using a patient-specific in vitro model of Chiari malformation. In combination, the greatest factor leading to measurement inconsistency was determined to be a lack of reproducibility between different MRI centers. Overall, these findings may help lead to better understanding for application of 2D PC MRI and 4D Flow techniques as diagnostic tools for CSF dynamics quantification in Chiari malformation and related diseases.


2005 ◽  
pp. 259-274
Author(s):  
José Roberto de F.Arruda
Keyword(s):  

1990 ◽  
Vol 34 (2) ◽  
pp. 223-244 ◽  
Author(s):  
H. Müller‐Mohnssen ◽  
D. Weiss ◽  
A. Tippe

2016 ◽  
Vol 56 ◽  
pp. 218-226 ◽  
Author(s):  
Zhuo Zhang ◽  
Valeria Arrighi ◽  
Lydia Campbell ◽  
Julien Lonchamp ◽  
Stephen R. Euston

Sign in / Sign up

Export Citation Format

Share Document