Strain-specific Sequence Alterations in the Gene Encoding the Histidine Protein Kinase CorS Might be Responsible for Temperature-dependent Production of the Phytotoxin Coronatine by Pseudomonas syringae

Author(s):  
A. V. Smirnova ◽  
S. Aufhammer ◽  
M. S. Ullrich
2015 ◽  
Vol 28 (6) ◽  
pp. 727-735 ◽  
Author(s):  
Andrew R. Russell ◽  
Tom Ashfield ◽  
Roger W. Innes

The Pseudomonas syringae effector AvrB triggers a hypersensitive resistance response in Arabidopsis and soybean plants expressing the disease resistance (R) proteins RPM1 and Rpg1b, respectively. In Arabidopsis, AvrB induces RPM1-interacting protein kinase (RIPK) to phosphorylate a disease regulator known as RIN4, which subsequently activates RPM1-mediated defenses. Here, we show that AvrPphB can suppress activation of RPM1 by AvrB and this suppression is correlated with the cleavage of RIPK by AvrPphB. Significantly, AvrPphB does not suppress activation of RPM1 by AvrRpm1, suggesting that RIPK is not required for AvrRpm1-induced modification of RIN4. This observation indicates that AvrB and AvrRpm1 recognition is mediated by different mechanisms in Arabidopsis, despite their recognition being determined by a single R protein. Moreover, AvrB recognition but not AvrRpm1 recognition is suppressed by AvrPphB in soybean, suggesting that AvrB recognition requires a similar molecular mechanism in soybean and Arabidopsis. In support of this, we found that phosphodeficient mutations in the soybean GmRIN4a and GmRIN4b proteins are sufficient to block Rpg1b-mediated hypersensitive response in transient assays in Nicotiana glutinosa. Taken together, our results indicate that AvrB and AvrPphB target a conserved defense signaling pathway in Arabidopsis and soybean that includes RIPK and RIN4.


Genetics ◽  
1995 ◽  
Vol 141 (4) ◽  
pp. 1275-1285 ◽  
Author(s):  
K N Huang ◽  
L S Symington

Abstract The PKC1 gene product, protein kinase C, regulates a mitogen-activated protein kinase (MAPK) cascade, which is implicated in cell wall metabolism. Previously, we identified the pkc1-4 allele in a screen for mutants with increased rates of recombination, indicating that PKC1 may also regulate DNA metabolism. The pkc1-4 allele also conferred a temperature-sensitive (ts) growth defect. Extragenic suppressors were isolated that suppress both the ts and hyperrecombination phenotypes conferred by the pkc1-4 mutation. Eight of these suppressors for into two complementation groups, designated KCS1 and KCS2. KCS1 was cloned and found to encode a novel protein with homology to the basic leucine zipper family of transcription factors. KCS2 is allelic with PTC1, a previously identified type 2C serine/threonine protein phosphatase. Although mutation of either KCS1 or PTC1 causes little apparent phenotype, the kcs1 delta ptc1 delta double mutant fails to grow at 30 degrees. Furthermore, the ptc1 deletion mutation is synthetically lethal in combination with a mutation in MPK1, which encodes a MAPK homologue proposed to act in the PKC1 pathway. Because PTC1 was initially isolated as a component of the Hog1p MAPK pathway, it appears that these two MAPK cascades share a common regulatory feature.


Genetics ◽  
2003 ◽  
Vol 164 (2) ◽  
pp. 487-499 ◽  
Author(s):  
Sophie Zuber ◽  
Michael J Hynes ◽  
Alex Andrianopoulos

AbstractThe opportunistic human pathogen Penicillium marneffei exhibits a temperature-dependent dimorphic switch. At 25°, multinucleate, septate hyphae that can undergo differentiation to produce asexual spores (conidia) are produced. At 37° hyphae undergo arthroconidiation to produce uninucleate yeast cells that divide by fission. This work describes the cloning of the P. marneffei gasC gene encoding a G-protein α-subunit that shows high homology to members of the class III fungal Gα-subunits. Characterization of a ΔgasC mutant and strains carrying a dominant-activating gasCG45R or a dominant-interfering gasCG207R allele show that GasC is a crucial regulator of germination. A ΔgasC mutant is severely delayed in germination, whereas strains carrying a dominant-activating gasCG45R allele show a significantly accelerated germination rate. Additionally, GasC signaling positively affects the production of the red pigment by P. marneffei at 25° and negatively affects the onset of conidiation and the conidial yield, showing that GasC function overlaps with functions of the previously described Gα-subunit GasA. In contrast to the S. cerevisiae ortholog Gpa2, our data indicate that GasC is not involved in carbon or nitrogen source sensing and plays no major role in either hyphal or yeast growth or in the switch between these two forms.


2005 ◽  
Vol 71 (10) ◽  
pp. 5794-5804 ◽  
Author(s):  
M. Andrea Azcarate-Peril ◽  
Olivia McAuliffe ◽  
Eric Altermann ◽  
Sonja Lick ◽  
W. Michael Russell ◽  
...  

ABSTRACT Two-component regulatory systems are one primary mechanism for environmental sensing and signal transduction. Annotation of the complete genome sequence of the probiotic bacterium Lactobacillus acidophilus NCFM revealed nine two-component regulatory systems. In this study, the histidine protein kinase of a two-component regulatory system (LBA1524HPK-LBA1525RR), similar to the acid-related system lisRK from Listeria monocytogenes (P. D. Cotter et al., J. Bacteriol. 181:6840-6843, 1999), was insertionally inactivated. A whole-genome microarray containing 97.4% of the annotated genes of L. acidophilus was used to compare genome-wide patterns of transcription at various pHs between the control and the histidine protein kinase mutant. The expression pattern of approximately 80 genes was affected by the LBA1524HPK mutation. Putative LBA1525RR target loci included two oligopeptide-transport systems present in the L. acidophilus genome, other components of the proteolytic system, and a LuxS homolog, suspected of participating in synthesis of the AI-2 signaling compound. The mutant exhibited lower tolerance to acid and ethanol in logarithmic-phase cells and poor acidification rates in milk. Supplementation of milk with Casamino Acids essentially restored the acid-producing ability of the mutant, providing additional evidence for a role of this two component system in regulating proteolytic activity in L. acidophilus.


2005 ◽  
Vol 71 (12) ◽  
pp. 8284-8291 ◽  
Author(s):  
Huseyin Basim ◽  
Gerald V. Minsavage ◽  
Robert E. Stall ◽  
Jaw-Fen Wang ◽  
Savita Shanker ◽  
...  

ABSTRACT We characterized the copper resistance genes in strain XvP26 of Xanthomonas campestris pv. vesicatoria, which was originally isolated from a pepper plant in Taiwan. The copper resistance genes were localized to a 7,652-bp region which, based on pulsed-field gel electrophoresis and Southern hybridization, was determined to be located on the chromosome. These genes hybridized only weakly, as determined by Southern analysis, to other copper resistance genes in Xanthomonas and Pseudomonas strains. We identified five open reading frames (ORFs) whose products exhibited high levels of amino acid sequence identity to the products of previously reported copper genes. Mutations in ORF1, ORF3, and ORF4 removed copper resistance, whereas mutations in ORF5 resulted in an intermediate copper resistance phenotype and insertions in ORF2 had no effect on resistance conferred to a copper-sensitive recipient in transconjugant tests. Based on sequence analysis, ORF1 was determined to have high levels of identity with the CopR (66%) and PcoR (63%) genes in Pseudomonas syringae pv. tomato and Escherichia coli, respectively. ORF2 and ORF5 had high levels of identity with the PcoS gene in E. coli and the gene encoding a putative copper-containing oxidoreductase signal peptide protein in Sinorhizobium meliloti, respectively. ORF3 and ORF4 exhibited 23% identity to the gene encoding a cation efflux system membrane protein, CzcC, and 62% identity to the gene encoding a putative copper-containing oxidoreductase protein, respectively. The latter two ORFs were determined to be induced following exposure to low concentrations of copper, while addition of Co, Cd, or Zn resulted in no significant induction. PCR analysis of 51 pepper and 34 tomato copper-resistant X. campestris pv. vesicatoria strains collected from several regions in Taiwan between 1987 and 2000 and nine copper-resistant strains from the United States and South America showed that successful amplification of DNA was obtained only for strain XvP26. The organization of this set of copper resistance genes appears to be uncommon, and the set appears to occur rarely in X. campestris pv. vesicatoria.


Genomics ◽  
1996 ◽  
Vol 34 (3) ◽  
pp. 430-432 ◽  
Author(s):  
Robert A. White ◽  
Rowland T. Hughes ◽  
Linda R. Adkison ◽  
Gail Bruns ◽  
Leonard I. Zon

2003 ◽  
Vol 14 (4) ◽  
pp. 1727-1743 ◽  
Author(s):  
Binggang Sun ◽  
Richard A. Firtel

We have identified a gene encoding RGS domain-containing protein kinase (RCK1), a novel regulator of G protein signaling domain-containing protein kinase. RCK1 mutant strains exhibit strong aggregation and chemotaxis defects. rck1 null cells chemotax ∼50% faster than wild-type cells, suggesting RCK1 plays a negative regulatory role in chemotaxis. Consistent with this finding, overexpression of wild-type RCK1 reduces chemotaxis speed by ∼40%. On cAMP stimulation, RCK1 transiently translocates to the membrane/cortex region with membrane localization peaking at ∼10 s, similar to the kinetics of membrane localization of the pleckstrin homology domain-containing proteins CRAC, Akt/PKB, and PhdA. RCK1 kinase activity also increases dramatically. The RCK1 kinase activity does not rapidly adapt, but decreases after the cAMP stimulus is removed. This is particularly novel considering that most other chemoattractant-activated kinases (e.g., Akt/PKB, ERK1, ERK2, and PAKa) rapidly adapt after activation. Using site-directed mutagenesis, we further show that both the RGS and kinase domains are required for RCK1 function and that RCK1 kinase activity is required for the delocalization of RCK1 from the plasma membrane. Genetic evidence suggests RCK1 function lies downstream from Gα2, the heterotrimeric G protein that couples to the cAMP chemoattractant receptors. We suggest that RCK1 might be part of an adaptation pathway that regulates aspects of chemotaxis in Dictyostelium.


Sign in / Sign up

Export Citation Format

Share Document