The Base-Level Effect

Author(s):  
Dan Bowman
Keyword(s):  
Author(s):  
E. Rau ◽  
N. Karelin ◽  
V. Dukov ◽  
M. Kolomeytsev ◽  
S. Gavrikov ◽  
...  

There are different methods and devices for the increase of the videosignal information in SEM. For example, with the help of special pure electronic [1] and opto-electronic [2] systems equipotential areas on the specimen surface in SEM were obtained. This report generalizes quantitative universal method for space distribution representation of research specimen parameter by contour equal signal lines. The method is based on principle of comparison of information signal value with the fixed levels.Transformation image system for obtaining equal signal lines maps was developed in two versions:1)In pure electronic system [3] it is necessary to compare signal U (see Fig.1-a), which gives potential distribution on specimen surface along each scanning line with fixed base level signals εifor obtaining quantitative equipotential information on solid state surface. The amplitude analyzer-comparator gives flare sport videopulses at any fixed coordinate and any instant time when initial signal U is equal to one of the base level signals ε.


2020 ◽  
Author(s):  
James McDonagh ◽  
William Swope ◽  
Richard L. Anderson ◽  
Michael Johnston ◽  
David J. Bray

Digitization offers significant opportunities for the formulated product industry to transform the way it works and develop new methods of business. R&D is one area of operation that is challenging to take advantage of these technologies due to its high level of domain specialisation and creativity but the benefits could be significant. Recent developments of base level technologies such as artificial intelligence (AI)/machine learning (ML), robotics and high performance computing (HPC), to name a few, present disruptive and transformative technologies which could offer new insights, discovery methods and enhanced chemical control when combined in a digital ecosystem of connectivity, distributive services and decentralisation. At the fundamental level, research in these technologies has shown that new physical and chemical insights can be gained, which in turn can augment experimental R&D approaches through physics-based chemical simulation, data driven models and hybrid approaches. In all of these cases, high quality data is required to build and validate models in addition to the skills and expertise to exploit such methods. In this article we give an overview of some of the digital technology demonstrators we have developed for formulated product R&D. We discuss the challenges in building and deploying these demonstrators.<br>


1995 ◽  
Vol 60 (8) ◽  
pp. 1274-1280 ◽  
Author(s):  
Kamil Wichterle

Analysis of extended data on turbine impeller power input in geometrically similar agitated baffled tanks shows that the power number Po is a function of Reynolds number Po = Po*(Re) until the emergence of surface aeration. Though it is usually anticipated that Po* = const in high Reynolds number region, some, whatever weak, function should be taken into consideration in more detailed analysis of the power data even here. In practice, disturbances of level and gas captured in the impeller region play also a significant role, namely in smaller tanks at higher impeller speeds. Decrease of power input can be explained by decrease of gas-liquid mixture density, or in other words by increase of efficient gas holdup eE just in the impeller region. The value eE defined by the relation Po = Po*(Re)/(1 + eE) was determined from the available data. Like other effects of the surface aeration it depends mainly on the dimensionless number Nc = (We Fr)1/4. A simple correlation eE (Nc) is suggested as a correction factor for prediction of impeller power in presence of gas capture.


Sign in / Sign up

Export Citation Format

Share Document