Influence of Process Parameters on Tensile Strength of Additive Manufactured Polymer Parts Using Taguchi Method

Author(s):  
K. Swarna Lakshmi ◽  
G. Arumaikkannu
2019 ◽  
Vol 969 ◽  
pp. 775-780
Author(s):  
Rajendra Khavekar ◽  
Hari Vasudevan ◽  
Gosar Vimal

In this Paper, the application of Taguchi Method (TM) on the process parameters of Injection Moulding of Polybutylene Terephthalate (PBT) is presented. The influence of process parameters, such as Injection Pressure, Suckback Pressure, Injection Time, Cooling Time, Zone 1 Temperature & Zone 2 Temperature (Barrel Temperatures) on Dark Spots and Short Shots (defects) were investigated using the Orthogonal Array L16 of Taguchi Method for 6 factors at 2 levels each with the response being percent defectives. It was found that Injection Pressure, Injection Time & Zone 1 Temperature had a major effect on the response. After the application of Taguchi Method, the rejection rate dropped down to 5.84% from 11.33%, which is a 48.45% reduction.


2017 ◽  
Vol 867 ◽  
pp. 97-104 ◽  
Author(s):  
T. Ganapathy ◽  
K. Lenin ◽  
K. Pannerselvam

This paper deals with the effective application of friction stir welding similar to butt joining technique.AL6063 T-6 alloys prepared in 125x 100 x 7mm thickness plate and FSW tool setup were H13 of diameter 25mm rotary tool with straight cylindrical pin profile. The maximum strength was considered for selection of combined process parameter. The process parameters were optimized using Taguchi method. The Rotational speed, welding speed, and axial speed are the main process parameter which taken into our consideration. The optimum process parameters are determined with reference to tensile strength of the joint. From the experiments, it was found the effects of welding parameter are the axial force is highest substantial parameter to determining the tensile strength of the joint. The paper which revealed the optimal values of process parameter are to acquire a maximum tensile strength of friction stir welded AL6063-T6 plates is 101.6Mpa with the combination level of rotational speed, welding speed and axial force are found to be 1100 RPM, 60 mm/min and 12.5 KN. validation test was carried out and results were nearer to the optimized results confirmed by the optimum results.


2014 ◽  
Vol 984-985 ◽  
pp. 291-296
Author(s):  
S.D. Saravanan ◽  
S. Sendhil Kumar

In the present work, Taguchi method was employed to optimize tensile strength and hardness of the stir casted Al/RHA composite. The composites were prepared by varying stir casting parameters like stirring time (6, 9, 12 min), stirring speed (100,200,300 r.pm), and weight percentage of RHA reinforcement (6, 9, 12 %). All the experiments were conducted based on plan of experiments (L9 Orthogonal array) generated through Taguchi Technique. The individual influence of each process parameters on the hardness and tensile strength was determined by using analysis of variance. The result implies that the wt. % of RHA reinforcement was found to be a highly influenced parameter followed by stirring time and stirring speed. Finally, confirmation test was done to verify predictive model with the experimental results.


2021 ◽  
Author(s):  
Qihan Li ◽  
Chuanwei Xu ◽  
Song Gao ◽  
Xiaoheng Han ◽  
Fenglei Ma ◽  
...  

Abstract The clinched process of heterogeneous materials is more and more used in automobile, aerospace, and household appliances manufacturing. Traditional spot welding is easy to produce heat influence and damage material itself, which restricts the application and development for the hybrid structure of the vehicle body. This paper is based on the test of clinching. The cross-section morphology of clinched joints is observed. Based on the tensile test data and the requirements of the test die, the finite element model of the steel-aluminum clinched joint forming is established. The model is proved to be effective in the process of clinched forming. Based on the simulation model, the influence of process parameters (forming process parameters, Punch’s geometry parameters, and concave die structural parameters) on the forming quality of steel- aluminum clinched joint is analyzed. The evaluation of the joint after forming includes the critical dimension, deformation, and neck-lock ratio. Then, the strength of the steel-aluminum clinched joint was studied by tensile shear test. The law of strength change and the neck-lock ratio is analyzed. The selection strategy of different process parameters is studied. The results show that the forming process of the joint is predicted by numerical simulation, and the quality of the joint is sound. The neck-lock ratio of the joint with the highest tensile and shear strength is less than one and close to 1, that is, the joint with forming force of 40kN. The tensile strength and shear strength of clinched joint are higher than the design index (shear strength is 1700N, tensile strength is 700N). The tensile strength was increased by 125%, and the shear strength was 62.35%.


2019 ◽  
Vol 1 (1) ◽  
Author(s):  
Yiqi Wang ◽  
Guangpeng Cui ◽  
Zhujian Shao ◽  
Yongjie Bao ◽  
Hang Gao

The hot pressing process parameters were optimized to prepare flax fiber reinforced polyethylene (PE) thermoplastic composite by the Taguchi method. The optimal hot pressing process parameters were determined to increase the tensile strength of the composite. The optimal parameters of the design include the following sections: hot pressing temperature, pressure, hot pressing time and coupling agent modification time. An L9 (3*4) orthogonal matrix based on the Taguchi method was created. By means of analysis of signal-to-noise ratio and analysis of variance, the optimal hot pressing process parameters combination was found, compared to the average tensile strength in the nine design experiments, and the tensile strength was improved nearly 10%.


Author(s):  
T. Kasirajan ◽  
R. Ravindran ◽  
T. Ramkumar ◽  
M. Selvakumar

This work deals with the joining of 6 mm thick dissimilar aluminium plates (AA5083-H111 and AA6082-T6) using a friction stir welding method and by varying the process parameters. Test experiments were performed to identify the influence of process parameters on the joint efficiency of the weldments. The process parameters such as tool rotation speed and tool pin profile were varied; whereas, tool travel speed, tilt angle, and axial force were kept constant for all weldments. Microstructure evaluation was carried out using light optical and scanning electron microscopes, which exposed the grain refinement in the nugget zone (NZ) and thermo-mechanical affected zone (TMAZ). Mechanical property tests for tensile strength, hardness, and bending were performed to understand the influence of the parameters over the weldments. Heat development between the tool shoulder and workpiece was analyzed by calculating the heat flow and heat flux. The thermal diffusivity of AA5083-H111 and AA6082-T6 were calculated to understand the influence of heat distribution in the joint efficiency of the weldments. It is inferred from the current study that the threaded cylinder tool at a rotational speed of 900 rpm achieved the highest tensile strength, hardness, and bend strength over the combination of other parameters.


Sign in / Sign up

Export Citation Format

Share Document