Analysis and Implementation of MPPT Algorithm for a PV System with High Efficiency Interleaved Isolated Converter

Author(s):  
T. Anuradha ◽  
V. Senthil Kumar ◽  
P. Deiva Sundari
Keyword(s):  

Author(s):  
G.Vijaykumar and Dr.V.Geetha

A high voltage gain modified SEPIC converter is proposed in this paper. This proposed converter has many advantages i.e., high output voltage, lower voltage stress, high efficiency, voltage gain is high without any coupled inductor and transformer, continuous input current. Thus, there is no overshoot voltage at turn-off process for switches. By using single switches, the CCM mode operation can be easily controlled by this converter, so control system is simple and also wide output values is obtained only by modifying the duty cycle. This modified converter has lower components than conventional converter. The operating modes and design of modified converter are discussed. The output power of this converter is 6 watts. By this converter, this converter capable of developing the two and half times of input voltage. The PV system also used this converter to develop high voltage gain. This high voltage gain is achieved by using MATLAB/SIMULIMK platform.



Author(s):  
Getzial Anbu Mani ◽  
A. K. Parvathy

<p>Boost converters of high gain are used for photo voltaic systems to obtain high efficiency. These high gain Boost converters gives increased output voltage for a low input produces high outputs for low input voltage. The High gain boost converters have the following merits. Conduction losses input current ripple and stress across the switches is reduced while the efficiency is increases. The high gain of the converters with the above said merits is obtained by changing the duty cycle of switches accordingly .In this paper a boost converter working with interleaved concept along with a additional Nstage voltage Multiplier has been carried out by simulation using MATLAB/ simulink and the mathematical modeling of various parameters is also done.</p>



Processes ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 117
Author(s):  
Yu-Kai Chen ◽  
Hong-Wen Hsu ◽  
Chau-Chung Song ◽  
Yu-Syun Chen

This paper proposes the design and implementation of inductor-inductor-capacitor (LLC) converters with modules connected in series with the power scan method and communication scan network (CSN) to achieve MPPT and regulate the output voltage for the PV micro-grid system. The Dc/Dc converters includes six isolated LLC modules in series to supply ±380 V output voltage and track the maximum power point of the PV system. The series LLC converters are adopted to achieve high efficiency and high flexibility for the PV micro-grid system. The proposed global maximum power scan technique is implemented to achieve global maximum power tracking by adjusting the switching frequency of the LLC converter. To improve the system flexibility and achieve system redundancy, module failure can be detected in real time with a communication scan network, and then the output voltage of other modules will be changed by adjusting the switching frequency to maintain the same voltage as before the failure. Additionally, the proposed communication scan network includes the RS-485 interface of the MPPT series module and the CAN BUS communication interface with other subsystems’ communication for the PV micro-grid application system. Finally, a 6 kW MPPT prototype with a communication scan network is implemented and the proposed control method is verified for the PV system.



Author(s):  
Yuwono Bimo Purnomo ◽  
F. Danang Wijaya ◽  
Eka Firmansyah

In a standalone photovoltaic (PV) system, a bidirectional DC converter (BDC) is needed to prevent the battery from damage caused by DC bus voltage variation. In this paper, BDC was applied in a standalone solar PV system to interface the battery with a DC bus in a standalone PV system. Therefore, its bidirectional power capability was focused on improving save battery operation while maintaining high power quality delivery. A non-isolated, buck and boost topology for the BDC configuration was used to interface the battery with the DC bus. PID controller-based control strategy was chosen for easy implementation, high reliability, and high dynamic performance. A simulation was conducted using MATLAB Simulink program. The simulation results show that the implementation of the BDC controller can maintain the DC bus voltage to 100 V, have high efficiency at 99.18% in boost mode and 99.48% in buck mode. To prevent the battery from overcharging condition, the BDC stops the charging process and then works as a voltage regulator to maintain the DC bus voltage at reference value.



2018 ◽  
Vol 7 (1) ◽  
pp. 66-85 ◽  
Author(s):  
Afef Badis ◽  
Mohamed Habib Boujmil ◽  
Mohamed Nejib Mansouri

This article concerns maximizing the energy reproduced from the photovoltaic (PV) system, ensured by using an efficient Maximum Power Point Tracking (MPPT) process. The process should be fast, rigorous and simple for implementation because the PV characteristics are extremely affected by fast changing conditions and Partial Shading (PS). PV systems are popularly known to have many peaks (one Global Peak (GP) and several local peaks). Therefore, the MPPT algorithm should be able to accurately detect the unique GP as the maximum power point (MPP), and avoid any other peak to mitigate the effect of (PS). Usually, with no shading, nearly all the conventional methods can easily reach the MPP with high efficiency. Nonetheless, they fail to extract the GP when PS occurs. To overcome this problem, Evolutionary Algorithms (AEs), namely the Particle Swarm Optimization (PSO) and Genetic Algorithm (GA) are simulated and compared to the conventional methods (Perturb & Observe) under the same software.



2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Chouki Balakishan ◽  
N. Sandeep ◽  
M. V. Aware

In many photovoltaic (PV) energy conversion systems, nonisolated DC-DC converters with high voltage gain are desired. The PV exhibits a nonlinear power characteristic which greatly depends on the environmental conditions. Hence in order to draw maximum available power various algorithms are used with PV voltage/current or both as an input for the maximum power point tracking (MPPT) controller. In this paper, golden section search (GSS) based MPPT control and its application with three-level DC-DC boost converter for MPPT are demonstrated. The three-level boost converter provides the high voltage transfer which enables the high power PV system to work with low size inductors with high efficiency. The balancing of the voltage across the two capacitors of the converter and MPPT is achieved using a simple duty cycle based voltage controller. Detailed simulation of three-level DC-DC converter topology with GSS algorithm is carried out in MATLAB/SIMULINK platform. The validation of the proposed system is done by the experiments carried out on hardware prototype of 100 W converter with low cost AT’mega328 controller as a core controller. From the results, the proposed system suits as one of the solutions for PV based generation system and the experimental results show high performance, such as a conversion efficiency of 94%.



2013 ◽  
Vol 441 ◽  
pp. 268-271
Author(s):  
De Da Sun ◽  
Da Hai Zhang ◽  
Yang Liu

Photovoltaic (PV) power systems are widely used today, so its useful to study how to make the PV maximum power output. In this paper a novel approach based on Support Vector Machine (SVM) for maximum power point tracking (MPPT) of PV systems is presented. The output power characteristics of PV cells vary with solar irradiation and temperature, so the controllers inputs is the level of solar radiation and ambient temperature of the PV module, and the voltage at maximum power point (MPP) is the output. Results show that the proposed MPPT controller based on SVM is sensitive to environmental changes and has high efficiency and less Mean Square Error (MSE).



Author(s):  
Essam Hendawi

<p>This paper presents an effective single phase grid connected photovoltaic PV system based on High Efficiency and Reliable Inverter Concept HERIC transformerless inverter.  dc-dc boost converter controlled by incremental conductance IC maximum power point tracker MPPT is employed to achieve the maximum extraction power of the PV panels.  Proportional integral PI controller controls the output voltage of the boost converter to meet the utility grid requirements.  LCL filter is utilized to keep the inverter voltage very close to sinusoidal shape.   Employing the HERIC transformerless inverter reduces significantly the ground leakage current beyond safe limits.  Semiconductors losses are studied to investigate the efficiency of the proposed system at different insolation levels.  Simulation results verify the high performance of the proposed system when considering leakage current and system efficiency.</p>



2018 ◽  
Vol 7 (2.12) ◽  
pp. 105
Author(s):  
Hee Chul Kim

Background/Objectives: Research and development of low-cost, high-efficiency devices that can be installed without replacing existing power generation equipment is promoted early. It is aimed to prevent the damage of property and human life by detecting the fire of PV system. Therefore, it is possible to easily install the device without replacing the solar module The aim is to minimize the damage to people.Methods/Statistical analysis: In order to prepare for the safety accidents of the photovoltaic power generation facilities due to fire and blast, the monitoring system should have the following functions as essential. Measures and analyzes the voltage and current of power generated in each string in the connection board in real time. An alarm is triggered when an abnormality of a specific string is detected or when an abnormal temperature change is detected in the connection panel internal temperature sensor.If the smoke sensor inside the connection panel detects smoke generation and an abnormality such as a fire is caught, the monitoring system immediately generates an alarm.Findings: It provides services such as checking the status of customer power plants, improving power generation efficiency, and recovering quickly in case of a disaster through a monitoring system that supports stable operation of the PV plant and profit generation. By using the existing connection box function as it is, the company minimized the additional cost, and promoted and promoted a low-cost, high-efficiency system.Improvements/Applications: H/W module using temperature and smoke sensor is interlocked with existing connection semi-control system to develop efficient connection monitoring device. In order to link the sensor value with the monitoring system, messages are added and supplemented. For the application of the fail-safe solution, we developed a monitoring device to prevent the escape of the solar module and developed the H / W module using the vibration and loosening sensor. We will develop the solar monitoring system based on cloud type IoT platform by linking the fault recognition and alarm generation function by adding / supplementing the sensor value to link with the monitoring system.As a power station management for cloud type (ASP) service, adoption of oneM2M standard based IoT platform can expand acceptance by monitoring web and mobile based monitoring as well as real time monitoring and fault monitoring of solar power plant.  



2021 ◽  
Vol 12 (1) ◽  
pp. 28
Author(s):  
Hafiz Muhammad Tayyab ◽  
Yaqoob Javed ◽  
Irfan Ullah ◽  
Abid Ali Dogar ◽  
Burhan Ahmed

A major problem in the photovoltaic (PV) system is to determine the maximum power point (MPP) and to overcome the limitations of environmental change. To resolve the limitation of different techniques with high convergence rate and less fluctuations, a hybrid model of fractional open circuit voltage is proposed. For partial shading, incremental conductance is used. The proposed technique is extremely useful, provides high efficiency, and takes less time to achieve the MPP. The tenacity of the proposed method has been checked using MATLAB/Simulink, which clearly shows that the proposed technique has high efficiency compared to other MPP tracking methods.



Sign in / Sign up

Export Citation Format

Share Document