Research on Low-Cost MSINS/GPS Vehicle Integrated Navigation Error Correction

Author(s):  
Shu-Ping Liu ◽  
Qing Li
2021 ◽  
pp. 1-12
Author(s):  
Yongwei Tang ◽  
Huijuan Hao ◽  
Jun Zhou ◽  
Yuexiang Lin ◽  
Zhenzhen Dong

AGV (Automated Guided Vehicle) technology has attracted increasing attention. Precise control of AGV position and attitude information in complex operating environment is a key part of smart factories. With outdoor AGV as a platform, this study uses BDS/INS combined navigation system combining Beidou positioning system and inertial navigation system and takes the velocity and position difference between BDS and INS as a model. An integrated navigation method is proposed to improve bee colony algorithm and optimize the BP neural network-assisted Kalman filtering to achieve accurate positioning. Moreover, the optimization of BP neural network navigation using INS navigation, network-assisted navigation and bee colony algorithm is simulated. Results demonstrate that the integrated navigation algorithm has effectiveness and feasibility, and can solve the problems of BDS misalignment and large INS navigation error in complex environments.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Huisheng Liu ◽  
Zengcai Wang ◽  
Susu Fang ◽  
Chao Li

A constrained low-cost SINS/OD filter aided with magnetometer is proposed in this paper. The filter is designed to provide a land vehicle navigation solution by fusing the measurements of the microelectromechanical systems based inertial measurement unit (MEMS IMU), the magnetometer (MAG), and the velocity measurement from odometer (OD). First, accelerometer and magnetometer integrated algorithm is studied to stabilize the attitude angle. Next, a SINS/OD/MAG integrated navigation system is designed and simulated, using an adaptive Kalman filter (AKF). It is shown that the accuracy of the integrated navigation system will be implemented to some extent. The field-test shows that the azimuth misalignment angle will diminish to less than 1°. Finally, an outliers detection algorithm is studied to estimate the velocity measurement bias of the odometer. The experimental results show the enhancement in restraining observation outliers that improves the precision of the integrated navigation system.


2014 ◽  
pp. 26-30
Author(s):  
Goutam Kumar Saha

This paper examines a software implemented self-checking technique that is capable of detecting processorregisters' hardware-transient faults. The proposed approach is intended to detect run-time transient bit-errors in memory and processor status register. Error correction is not considered here. However, this low-cost approach is intended to be adopted in commodity systems that use ordinary off-the-shelf microprocessors, for the purpose of operational faults detection towards gaining fail-safe kind of fault tolerant system.


GPS Solutions ◽  
2005 ◽  
Vol 9 (4) ◽  
pp. 294-311 ◽  
Author(s):  
Dong-Hwan Hwang ◽  
Sang Heon Oh ◽  
Sang Jeong Lee ◽  
Chansik Park ◽  
Chris Rizos

2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Chong Shen ◽  
Zesen Bai ◽  
Huiliang Cao ◽  
Ke Xu ◽  
Chenguang Wang ◽  
...  

The drift of inertial navigation system (INS) will lead to large navigation error when a low-cost INS is used in microaerial vehicles (MAV). To overcome the above problem, an INS/optical flow/magnetometer integrated navigation scheme is proposed for GPS-denied environment in this paper. The scheme, which is based on extended Kalman filter, combines INS and optical flow information to estimate the velocity and position of MAV. The gyro, accelerator, and magnetometer information are fused together to estimate the MAV attitude when the MAV is at static state or uniformly moving state; and the gyro only is used to estimate the MAV attitude when the MAV is accelerating or decelerating. The MAV flight data is used to verify the proposed integrated navigation scheme, and the verification results show that the proposed scheme can effectively reduce the errors of navigation parameters and improve navigation precision.


2020 ◽  
Vol 12 (5) ◽  
pp. 747
Author(s):  
Peng Zhang ◽  
Yinzhi Zhao ◽  
Huan Lin ◽  
Jingui Zou ◽  
Xinzhe Wang ◽  
...  

The global navigation satellite system (GNSS)-based attitude determination system has attracted more and more attention with the advantages of having simplified algorithms, a low price and errors that do not accumulate over time. However, GNSS signals may have poor quality or lose lock in some epochs with the influence of signal fading and the multipath effect. When the direct attitude determination method is applied, the primary baseline may not be available (ambiguity is not fixed), leading to the inability of attitude determination. With the gradual popularization of low-cost receivers, making full use of spatial redundancy information of multiple antennas brings new ideas to the GNSS-based attitude determination method. In this paper, an attitude angle conversion algorithm, selecting an arbitrary baseline as the primary baseline, is derived. A multi-antenna attitude determination method based on primary baseline switching is proposed, which is performed on a self-designed embedded software and hardware platform. The proposed method can increase the valid epoch proportion and attitude information. In the land vehicle test, reference results output from a high-accuracy integrated navigation system were used to evaluate the accuracy and reliability. The results indicate that the proposed method is correct and feasible. The valid epoch proportion is increased by 16.2%, which can effectively improve the availability of attitude determination. The RMS of the heading, pitch and roll angles are 0.52°, 1.25° and 1.16°.


2013 ◽  
Vol 849 ◽  
pp. 302-309
Author(s):  
Yun Xu ◽  
Xin Hua Zhu ◽  
Yu Wang

With rapid development of micro fabrication technology, the performance of MIMU has gradually improved. The MIMU introduced in this paper is based on the silicon micro machined gyroscope of type MSG7000D and accelerometer of type MSA6000. The volume of it is 3×3×3cm3, the mass is 68.5g and the power consumption is less than 1w. The experimental result shows that the bias stability of the gyroscope and accelerometer for each axis of the designed MIMU is less than 10°/h and 0.5mg respectively. For the non orthogonality in three axes of the structure, MIMU needs to be calibrated. After calibration, the measurement accuracy has improved by an order of magnitude. The designed MIMU can satisfy the requirement of high performance, low cost, light weight and small size for strap-down navigation system, thus it can be widely applied not only to the field of vehicles integrated navigation, attitude measurement but also to the fields of personal goods such as mobile, game consoles and so on.


Sign in / Sign up

Export Citation Format

Share Document