Gene Ontology Based Function Prediction of Human Protein Using Protein Sequence and Neighborhood Property of PPI Network

Author(s):  
Sovan Saha ◽  
Piyali Chatterjee ◽  
Subhadip Basu ◽  
Mita Nasipuri
2021 ◽  
Vol 104 (3) ◽  
pp. 003685042110180
Author(s):  
Xiao Lin ◽  
Meng Zhou ◽  
Zehong Xu ◽  
Yusheng Chen ◽  
Fan Lin

In this study, we aimed to screen out genes associated with a high risk of postoperative recurrence of lung adenocarcinoma and investigate the possible mechanisms of the involvement of these genes in the recurrence of lung adenocarcinoma. We identify Hub genes and verify the expression levels and prognostic roles of these genes. Datasets of GSE40791, GSE31210, and GSE30219 were obtained from the Gene Expression Omnibus database. Enrichment analysis of gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were performed for the screened candidate genes using the DAVID database. Then, we performed protein–protein interaction (PPI) network analysis through the database STRING. Hub genes were screened out using Cytoscape software, and their expression levels were determined by the GEPIA database. Finally, we assessed the relationships of Hub genes expression levels and the time of survival. Forty-five candidate genes related to a high-risk of lung adenocarcinoma recurrence were screened out. Gene ontology analysis showed that these genes were enriched in the mitotic spindle assembly checkpoint, mitotic sister chromosome segregation, G2/M-phase transition of the mitotic cell cycle, and ATP binding, etc. KEGG analysis showed that these genes were involved predominantly in the cell cycle, p53 signaling pathway, and oocyte meiosis. We screened out the top ten Hub genes related to high expression of lung adenocarcinoma from the PPI network. The high expression levels of eight genes (TOP2A, HMMR, MELK, MAD2L1, BUB1B, BUB1, RRM2, and CCNA2) were related to short recurrence-free survival and they can be used as biomarkers for high risk of lung adenocarcinoma recurrence. This study screened out eight genes associated with a high risk of lung adenocarcinoma recurrence, which might provide novel insights into researching the recurrence mechanisms of lung adenocarcinoma as well as into the selection of targets in the treatment of the disease.


2022 ◽  
Vol 12 (3) ◽  
pp. 523-532
Author(s):  
Xin Yan ◽  
Chunfeng Liang ◽  
Xinghuan Liang ◽  
Li Li ◽  
Zhenxing Huang ◽  
...  

<sec> <title>Objective:</title> This study aimed to identify the potential key genes associated with the progression and prognosis of adrenocortical carcinoma (ACC). </sec> <sec> <title>Methods:</title> Differentially expressed genes (DEGs) in ACC cells and normal adrenocortical cells were assessed by microarray from the Gene Expression Omnibus database. The biological functions of the classified DEGs were examined by Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes pathway (KEGG) enrichment analyses and a protein–protein interaction (PPI) network was mapped using Cytoscape software. MCODE software was also used for the module analysis and then 4 algorithms of cytohubba software were used to screen hub genes. The overall survival (OS) examination of the hub genes was then performed by the ualcan online tool. </sec> <sec> <title>Results:</title> Two GSEs (GSE12368, GSE33371) were downloaded from GEO including 18 and 43 cases, respectively. One hundred and sixty-nine DEGs were identified, including 57 upregulated genes and 112 downregulated genes. The Gene Ontology (GO) analyses showed that the upregulated genes were significantly enriched in the mitotic cytokines is, nucleus and ATP binding, while the downregulated genes were involved in the positive regulation of cardiac muscle contraction, extracellular space, and heparin-binding (P < 0.05). The Kyoto Encyclopedia of Genes and Genomes pathway (KEGG) pathway examination showed significant pathways including the cell cycle and the complement and coagulation cascades. The protein– protein interaction (PPI) network consisted of 162 nodes and 847 edges, including mitotic nuclear division, cytoplasmic, protein kinase binding, and cell cycle. All 4 identified hub genes (FOXM1, UBE2C, KIF11, and NDC80) were associated with the prognosis of adrenocortical carcinoma (ACC) by survival analysis. </sec> <sec> <title>Conclusions:</title> The present study offered insights into the molecular mechanism of adrenocortical carcinoma (ACC) that may be beneficial in further analyses. </sec>


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Suresh Subramani ◽  
Saranya Jayapalan ◽  
Raja Kalpana ◽  
Jeyakumar Natarajan

HomoKinase database is a comprehensive collection of curated human protein kinases and their relevant biological information. The entries in the database are curated by three criteria: HGNC approval, gene ontology-based biological process (protein phosphorylation), and molecular function (ATP binding and kinase activity). For a given query protein kinase name, the database provides its official symbol, full name, other known aliases, amino acid sequences, functional domain, gene ontology, pathways assignments, and drug compounds. In addition, as a search tool, it enables the retrieval of similar protein kinases with specific family, subfamily, group, and domain combinations and tabulates the information. The present version contains 498 curated human protein kinases and links to other popular databases.


2018 ◽  
Vol 14 (05) ◽  
pp. 206-212 ◽  
Author(s):  
Md. Shakil Ahmed ◽  
◽  
Md. Shahjaman ◽  
Enamul Kabir ◽  
Md. Kamruzzaman ◽  
...  

2022 ◽  
Author(s):  
Musadaq Mansoor ◽  
Mohammad Nauman ◽  
Hafeez Ur Rehman ◽  
Alfredo Benso

2020 ◽  
Vol 25 (1) ◽  
Author(s):  
Xue Jiang ◽  
Zhijie Xu ◽  
Yuanyuan Du ◽  
Hongyu Chen

Abstract Background Immunoglobulin A nephropathy (IgAN) is the most common primary glomerulopathy worldwide. However, the molecular events underlying IgAN remain to be fully elucidated. This study aimed to identify novel biomarkers of IgAN through bioinformatics analysis and elucidate the possible molecular mechanism. Methods Based on the microarray datasets GSE93798 and GSE37460 downloaded from the Gene Expression Omnibus database, the differentially expressed genes (DEGs) between IgAN samples and normal controls were identified. Using the DEGs, we further performed a series of functional enrichment analyses. Protein–protein interaction (PPI) networks of the DEGs were constructed using the STRING online search tool and were visualized using Cytoscape. Next, hub genes were identified and the most important module among the DEGs, Biological Networks Gene Ontology tool (BiNGO), was used to elucidate the molecular mechanism of IgAN. Results In total, 148 DEGs were identified, comprising 53 upregulated genes and 95 downregulated genes. Gene Ontology (GO) analysis indicated that the DEGs for IgAN were mainly enriched in extracellular exosome, region and space, fibroblast growth factor stimulus, inflammatory response, and innate immunity. Module analysis showed that genes in the top 1 significant module of the PPI network were mainly associated with innate immune response, integrin-mediated signaling pathway and inflammatory response. The top 10 hub genes were constructed in the PPI network, which could well distinguish the IgAN and control group in monocyte and tissue samples. We finally identified the integrin subunit beta 2 (ITGB2) and Fc fragment of IgE receptor Ig (FCER1G) genes that may play important roles in the development of IgAN. Conclusions We identified key genes along with the pathways that were most closely related to IgAN initiation and progression. Our results provide a more detailed molecular mechanism for the development of IgAN and novel candidate gene targets of IgAN.


Sign in / Sign up

Export Citation Format

Share Document