Anomalous Features of Black Carbon and Particulate Matter Observed Over Rural Station During Diwali Festival of 2015

Author(s):  
P. C. S. Devara ◽  
M. P. Alam ◽  
U. C. Dumka ◽  
S. Tiwari ◽  
A. K. Srivastava
2015 ◽  
Vol 15 (6) ◽  
pp. 9573-9629 ◽  
Author(s):  
J. C. Corbin ◽  
U. Lohmann ◽  
B. Sierau ◽  
A. Keller ◽  
H. Burtscher ◽  
...  

Abstract. Soot particles are the most strongly light-absorbing particles commonly found in the atmosphere. They are major contributors to the radiative budget of the Earth and to the toxicity of atmospheric pollution. Atmospheric aging of soot may change its health- and climate-relevant properties by oxidizing the primary black carbon (BC) or organic particulate matter (OM) which, together with ash, comprise soot. This atmospheric aging, which entails the condensation of secondary particulate matter as well as the oxidation of the primary OM and BC emissions, is currently poorly understood. In this study, atmospheric aging of wood-stove soot aerosols was simulated in a continuous-flow reactor. The composition of fresh and aged soot particles was measured in real time by a dual-vaporizer aerosol-particle mass spectrometer (SP-AMS). The SP-AMS provided information on the OM, BC, and surface composition of the soot. The OM appeared to be generated largely by cellulose and/or hemicellulose pyrolysis, and was only present in large amounts when new wood was added to the stove. BC signals otherwise dominated the mass spectrum. These signals consisted of ions related to refractory BC (rBC, C+1−5), oxygenated surface groups (CO+1−2), potassium (K+) and water (H+2O and related fragments). The C+4 : C+3 ratio, but not the C+1 : C+3 ratio, was consistent with the BC-structure trends of Corbin et al. (2015c). The CO+1−2 signals likely originated from BC surface groups: upon aging, both CO+ and CO+2 increased relative to C+1−3 while CO+2 simultaneously increased relative to CO+. Factor analysis (PMF) of SP-AMS and AMS data, using a new error model to account for peak-integration uncertainties, indicated that the surface composition of the BC was approximately constant across all stages of combustion for both fresh and aged samples. These results represent the first time-resolved measurements of in-situ BC-surface aging and suggest that the surface of beech-wood BC may be modelled as a single chemical species.


2021 ◽  
Author(s):  
Yingmei Feng ◽  
Lutgarde Thijs ◽  
Zhen-Yu Zhang ◽  
Esmee M. Bijnens ◽  
Wen-Yi Yang ◽  
...  

Abstract Whereas the adverse impact of fine particulate matter on coronary heart disease and respiratory disorders has been clarified, its influence on glomerular function is not well defined in population studies. Serum creatinine levels were quantified in 820 randomly recruited people (50.7% women; mean age 51.1 years). Among them, 653 participants were followed up for a median of 4.8 years. Using multivariable-adjusted mixed model, eGFR (or serum creatinine) both at baseline and follow-up were regressed against long term residential black carbon (BC) or PM2.5 (particles with an aerodynamic diameter ≤2.5 µm). In longitudinal analysis, the percent change in eGFR was regressed against long term residential exposure to BC or PM2.5. eGFR averaged 80.9 (SD 16.4) mL/min/1.73m2 and median long term PM2.5 and black carbon amounted 13.1 (SD 0.92) and 1.10 (SD 0.19) µg/m³, respectively. In multivariable-adjusted cross-sectional analyses, eGFR was unrelated to BC and PM2.5 (P ≥ 0.59). During follow-up, eGFR decreased on average by 1.9 mL/min/1.73m2 (95% confidence interval: 1.0-2.8). The percentage decline in eGFR was not significantly associated with either BC or PM2.5 (P ≥ 0.75). In conclusion, long-term residential exposure to PM2.5 and black carbon is not associated with eGFR decline in predominantly healthy people drawn from a general semirural population.


2019 ◽  
Vol 206 ◽  
pp. 258-270 ◽  
Author(s):  
Burcu Onat ◽  
Ülkü Alver Şahin ◽  
Burcu Uzun ◽  
Özcan Akın ◽  
Fazilet Özkaya ◽  
...  

2019 ◽  
Vol 19 (16) ◽  
pp. 10675-10696 ◽  
Author(s):  
Melliza Templonuevo Cruz ◽  
Paola Angela Bañaga ◽  
Grace Betito ◽  
Rachel A. Braun ◽  
Connor Stahl ◽  
...  

Abstract. This paper presents novel results from size-resolved particulate matter (PM) mass, composition, and morphology measurements conducted during the 2018 southwest monsoon (SWM) season in Metro Manila, Philippines. Micro-orifice uniform deposit impactors (MOUDIs) were used to collect PM sample sets composed of size-resolved measurements at the following aerodynamic cut-point diameters (Dp): 18, 10, 5.6, 3.2, 1.8, 1.0, 0.56, 0.32, 0.18, 0.10, and 0.056 µm. Each sample set was analyzed for composition of the water-soluble fraction. Analysis for mass was carried out on two sample sets, whereas black carbon (BC) and morphology analysis were analyzed on a single sample set. The bulk of the PM mass was between 0.18 and 1.0 µm with a dominant mode between 0.32 and 0.56 µm. Similarly, most of the black carbon (BC) mass was found between 0.10 and 1.0 µm, peaking between 0.18 and 0.32 µm. These peaks are located in the Greenfield gap, or the size range between 0.10 and 1.0 µm, where wet scavenging by rain is relatively inefficient. In the range between 0.10 and 0.18 µm, BC constituted 78.1 % of the measured mass. Comparable contributions of BC (26.9 %) and the water-soluble fraction (33.4 %) to total PM were observed and most of the unresolved mass, which amounted to 39.6 % in total, was for diameters exceeding 0.32 µm. The water-soluble ions and elements exhibited an average combined concentration of 8.53 µg m−3, with SO42-, NH4+, NO3-, Na+, and Cl− as the major contributors. Positive matrix factorization (PMF) was applied to identify the possible aerosol sources and estimate their contribution to the water-soluble fraction of collected PM. The factor with the highest contribution was attributed to “aged aerosol” (48.0 %), while “sea salt” (22.5 %) and “combustion” emissions (18.7 %) had comparable contributions. “Vehicular/resuspended dust” (5.6 %) and “waste processing” emissions (5.1 %) were also identified. Microscopy analysis highlighted the ubiquity of nonspherical particles regardless of size, which is significant when considering calculations of parameters such as single scattering albedo, the asymmetry parameter, and the extinction efficiency. The significant influence from aged aerosol to Metro Manila during the SWM season indicates that local sources in this megacity do not fully govern this coastal area's aerosol properties. The fact that the majority of the regional aerosol mass burden is accounted for by BC and other insoluble components has important downstream effects on the aerosol hygroscopic properties, which depend on composition. The results are relevant for understanding the impacts of monsoonal features on size-resolved aerosol properties, notably aqueous processing and wet scavenging. Finally, the results of this work provide contextual data for future sampling campaigns in Southeast Asia such as the airborne component of the Cloud, Aerosol, and Monsoon Processes Philippines Experiment (CAMP2Ex) planned for the SWM season in 2019.


2020 ◽  
Vol 13 (4) ◽  
pp. 1867-1885 ◽  
Author(s):  
Stuart K. Grange ◽  
Hanspeter Lötscher ◽  
Andrea Fischer ◽  
Lukas Emmenegger ◽  
Christoph Hueglin

Abstract. Black carbon (BC) or soot is a constituent of particulate matter (PM) which is relevant for negative human health and climate effects, and despite the lack of direct legal limits, it is recognised as an important atmospheric pollutant to monitor, understand, and control. Aethalometers are instruments which continuously monitor BC by measuring absorption at a number of distinct wavelengths. If collocated elemental carbon (EC) observations are used to transform these values into BC mass, by convention, the result is named equivalent black carbon (EBC). BC emitted by different combustion processes has different optical absorption characteristics, and this can be used to apportion EBC mass into traffic (EBCTR) and woodburning (EBCWB) components with a data processing technique known as the aethalometer model. The aethalometer model was applied to six EBC monitoring sites across Switzerland (using data between 2008 and 2018) and was evaluated by investigating diurnal cycles, model coefficients, and ambient temperature dependence of the two EBC components. For one monitoring site, San Vittore, the aethalometer model failed to produce plausible outputs. The reason for this failure was likely due to a high load of freshly emitted wood smoke during the winter which should be thought of as a third distinct emission source. After model evaluation, the trend analysis indicated that EBCTR concentrations at the remaining five locations significantly decreased between 2008 and 2018. EBCWB also demonstrated significant decreases in most monitoring locations but not at a monitoring site south of the Alps with a high PM load sourced from biomass burning. Ratios of EBC and particulate matter with a diameter of less than 2.5 µm (PM2.5) suggested that EBC contributes 6 %–14 % of the PM2.5 mass in Switzerland. The aethalometer model is a useful data analysis procedure but can fail under certain conditions; thus, careful evaluation is required to ensure the method is robust and suitable in other locations.


2014 ◽  
Vol 64 (6) ◽  
pp. 617-619
Author(s):  
A. Gwen Eklund ◽  
George M. Hidy ◽  
John G. Watson ◽  
Judith C. Chow

2020 ◽  
Author(s):  
Veronika S. Brand ◽  
Thiago Nogueira ◽  
Prashant Kumar ◽  
Maria de Fatima Andrade

<p>Commuters are vulnerable to traffic air pollutants, especially to fine particulate matter (PM<sub>2.5</sub>) and black carbon (BC) because of their proximity to on-road vehicles. Both pollutants have been extensively associated to adverse health effects (i.e., stroke, diabetes, cardiovascular and respiratory diseases, and cancer). Therefore, this work aims to investigate the extreme concentrations of PM<sub>2.5</sub> and BC occurrence in commuters in the megacity of São Paulo, Brazil. We carried out a field campaign measuring the commuter exposure to PM<sub>2.5</sub> and BC concentrations inside buses, cars and undergrounds in São Paulo during morning and evening peak-hours. We fitted an Extreme Value Distribution to the collected data to investigate the behavior of the extreme values in the different transport modes and periods of the day. The results suggest that higher concentrations of PM<sub>2.5</sub> and BC occur more frequently inside buses, followed by cars and undergrounds. Extreme concentrations for both pollutants are more likely to happen during morning peak-hours when compared to evening peak-hours. Our findings add further evidence that the transport mode and period of the day affect substantially the PM<sub>2.5</sub> and BC exposure in commuters. Furthermore, the results are quite useful for supporting urban policies that consider the improvement of the efficiency of air filtering systems inside public transport and private cars.</p>


Sign in / Sign up

Export Citation Format

Share Document