Cell-Surface Glucoreceptor Recognizing Anomers of Glucose in Pancreatic β-Cells

Author(s):  
Yuko Nakagawa ◽  
Hatsumi Niki
2020 ◽  
Vol 167 (6) ◽  
pp. 587-596 ◽  
Author(s):  
Kento Maeda ◽  
Masayoshi Tasaki ◽  
Yukio Ando ◽  
Kazuaki Ohtsubo

Abstract Maintenance of cell surface residency and function of glycoproteins by lectins are essential for regulating cellular functions. Galectins are β-galactoside-binding lectins and form a galectin-lattice, which regulates stability, clustering, membrane sub-domain localization and endocytosis of plasmalemmal glycoproteins. We have previously reported that galectin-2 (Gal-2) forms a complex with cationic amino acid transporter 3 (CAT3) in pancreatic β cells, although the biological significance of the molecular interaction between Gal-2 and CAT3 has not been elucidated. In this study, we demonstrated that the structure of N-glycan of CAT3 was either tetra- or tri-antennary branch structure carrying β-galactosides, which works as galectin-ligands. Indeed, CAT3 bound to Gal-2 using β-galactoside epitope. Moreover, the disruption of the glycan-mediated bindings between galectins and CAT3 significantly reduced cell surface expression levels of CAT3. The reduced cell surface residency of CAT3 attenuated the cellular arginine uptake activities and subsequently reduced nitric oxide production, and thus impaired the arginine-stimulated insulin secretion of pancreatic β cells. These results indicate that galectin-lattice stabilizes CAT3 by preventing endocytosis to sustain the arginine-stimulated insulin secretion of pancreatic β cells. This provides a novel cell biological insight into the endocrinological mechanism of nutrition metabolism and homeostasis.


PLoS ONE ◽  
2015 ◽  
Vol 10 (12) ◽  
pp. e0144053 ◽  
Author(s):  
Yuko Nakagawa ◽  
Masahiro Nagasawa ◽  
Johan Medina ◽  
Itaru Kojima

2021 ◽  
Author(s):  
Janelle M. Tobias ◽  
Gabriela Rajic ◽  
Alexander E. G. Viray ◽  
David Icka-Araki ◽  
James A. Frank

Optically-cleavable targeted ligands unite photocaged chemistry with genetic targeting to induce cell activity at defined membranes. OCT-PEA uncaging stiumlates β-cell activity via cell surface GPR55.


1968 ◽  
Vol 59 (3) ◽  
pp. 479-486 ◽  
Author(s):  
Lars-Ake Idahl ◽  
Bo Hellman

ABSTRACT The combination of enzymatic cycling and fluorometry was used for measuring glucose and glucose-6-phosphate in pancreatic β-cells from obese-hyperglycaemic mice. The glucose level of the β-cells corresponded to that of serum over a wide concentration range. In the exocrine pancreas, on the other hand, a significant barrier to glucose diffusion across the cell membranes was demonstrated. During 5 min of ischaemia, the glucose level remained practically unchanged in the β-cells while it increased in the liver and decreased in the brain. The observation that the pancreatic β-cells are characterized by a relatively low ratio of glucose-6-phosphate to glucose may be attributed to the presence of a specific glucose-6-phosphatase.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ionel Sandovici ◽  
Constanze M. Hammerle ◽  
Sam Virtue ◽  
Yurena Vivas-Garcia ◽  
Adriana Izquierdo-Lahuerta ◽  
...  

AbstractWhen exposed to nutrient excess and insulin resistance, pancreatic β-cells undergo adaptive changes in order to maintain glucose homeostasis. The role that growth control genes, highly expressed in early pancreas development, might exert in programming β-cell plasticity in later life is a poorly studied area. The imprinted Igf2 (insulin-like growth factor 2) gene is highly transcribed during early life and has been identified in recent genome-wide association studies as a type 2 diabetes susceptibility gene in humans. Hence, here we investigate the long-term phenotypic metabolic consequences of conditional Igf2 deletion in pancreatic β-cells (Igf2βKO) in mice. We show that autocrine actions of IGF2 are not critical for β-cell development, or for the early post-natal wave of β-cell remodelling. Additionally, adult Igf2βKO mice maintain glucose homeostasis when fed a chow diet. However, pregnant Igf2βKO females become hyperglycemic and hyperinsulinemic, and their conceptuses exhibit hyperinsulinemia and placentomegalia. Insulin resistance induced by congenital leptin deficiency also renders Igf2βKO females more hyperglycaemic compared to leptin-deficient controls. Upon high-fat diet feeding, Igf2βKO females are less susceptible to develop insulin resistance. Based on these findings, we conclude that in female mice, autocrine actions of β-cell IGF2 during early development determine their adaptive capacity in adult life.


2021 ◽  
Vol 22 (3) ◽  
pp. 1059
Author(s):  
Bodo C. Melnik

Epidemiological studies associate milk consumption with an increased risk of Parkinson’s disease (PD) and type 2 diabetes mellitus (T2D). PD is an α-synucleinopathy associated with mitochondrial dysfunction, oxidative stress, deficient lysosomal clearance of α-synuclein (α-syn) and aggregation of misfolded α-syn. In T2D, α-syn promotes co-aggregation with islet amyloid polypeptide in pancreatic β-cells. Prion-like vagal nerve-mediated propagation of exosomal α-syn from the gut to the brain and pancreatic islets apparently link both pathologies. Exosomes are critical transmitters of α-syn from cell to cell especially under conditions of compromised autophagy. This review provides translational evidence that milk exosomes (MEX) disturb α-syn homeostasis. MEX are taken up by intestinal epithelial cells and accumulate in the brain after oral administration to mice. The potential uptake of MEX miRNA-148a and miRNA-21 by enteroendocrine cells in the gut, dopaminergic neurons in substantia nigra and pancreatic β-cells may enhance miRNA-148a/DNMT1-dependent overexpression of α-syn and impair miRNA-148a/PPARGC1A- and miRNA-21/LAMP2A-dependent autophagy driving both diseases. MiRNA-148a- and galactose-induced mitochondrial oxidative stress activate c-Abl-mediated aggregation of α-syn which is exported by exosome release. Via the vagal nerve and/or systemic exosomes, toxic α-syn may spread to dopaminergic neurons and pancreatic β-cells linking the pathogenesis of PD and T2D.


Sign in / Sign up

Export Citation Format

Share Document