scholarly journals Manipulation of Microalgal Lipid Production: A Genetic Engineering Aspect

Author(s):  
Su Chern Foo ◽  
Nicholas M. H. Khong ◽  
Fatimah Md. Yusoff
2021 ◽  
Vol 11 (3) ◽  
pp. 072-077
Author(s):  
Siti Zulaiha

Biofuel is one of the most promising alternative energy sources for reducing human reliance on fossil fuels. Microalgae has recently emerged as the most promising biofuel source. However, biofuels from microalgae are still not feasible to replace fossil fuels because of their high production costs, therefore, it is necessary to pick microalgae species with high growth rates and lipid content. Overexpression of lipid biosynthesis enzymes and inhibition of competitive metabolic pathways are two genetic engineering strategies that can be developed to assess microalgae lipid production. Malate and multienzyme enzymes (GPAT, LPAAT and DGAT) can be overexpressed in microalgae to boost lipid production. The strategy of blocking competitive metabolic pathways can be carried out through suppression of starch metabolism and lipid catabolism. The strategy of blocking competitive metabolic pathways has been carried out in several microalgae and is effective for enhancing lipid biosynthesis. Several mutations that block both the starch metabolic and lipid catabolic pathways can result in increased levels of microalgal lipid accumulation.


Author(s):  
Sheena Kumari ◽  
Poonam Singh ◽  
Sanjay Kumar Gupta ◽  
Santhosh Kumar

2021 ◽  
pp. 107836
Author(s):  
Camilo F. Muñoz ◽  
Christian Südfeld ◽  
Mihris I.S. Naduthodi ◽  
Ruud A. Weusthuis ◽  
Maria J. Barbosa ◽  
...  

2014 ◽  
Vol 3 (2) ◽  
pp. 311-323 ◽  
Author(s):  
Sudip Paudel ◽  
Michael A Menze

The use of recently developed genetic engineering tools in combination with organisms that have the potential to produce precursors for the production of biodiesel, promises a sustainable and environment friendly energy source. Enhanced lipid production in wild type and/or genetically engineered organisms can offer sufficient raw material for industrial transesterification of plant-based triglycerides. Bio-diesel, produced with the help of genetically modified organisms, might be one of the best alternatives to fossil fuels and to mitigate various environmental hazards. DOI: http://dx.doi.org/10.3126/ije.v3i2.10644 International Journal of the Environment Vol.3(2) 2014: 311-323


1996 ◽  
Vol 57-58 (1) ◽  
pp. 223-231 ◽  
Author(s):  
Terri G. Dunahay ◽  
Eric E. Jarvis ◽  
Sonja S. Dais ◽  
Paul G. Roessler

2020 ◽  
Vol 12 (12) ◽  
pp. 5125
Author(s):  
Neha Arora ◽  
Hong-Wei Yen ◽  
George P. Philippidis

Oleaginous microalgae and yeasts represent promising candidates for large-scale production of lipids, which can be utilized for production of drop-in biofuels, nutraceuticals, pigments, and cosmetics. However, low lipid productivity and costly downstream processing continue to hamper the commercial deployment of oleaginous microorganisms. Strain improvement can play an essential role in the development of such industrial microorganisms by increasing lipid production and hence reducing production costs. The main means of strain improvement are random mutagenesis, adaptive laboratory evolution (ALE), and rational genetic engineering. Among these, random mutagenesis and ALE are straight forward, low-cost, and do not require thorough knowledge of the microorganism’s genetic composition. This paper reviews available mutagenesis and ALE techniques and screening methods to effectively select for oleaginous microalgae and yeasts with enhanced lipid yield and understand the alterations caused to metabolic pathways, which could subsequently serve as the basis for further targeted genetic engineering.


Author(s):  
Terri G. Dunahay ◽  
Eric E. Jarvis ◽  
Sonja S. Dais ◽  
Paul G. Roessler

2021 ◽  
Author(s):  
Hui Huang ◽  
Yali Niu ◽  
Qi Jin ◽  
Kunhai Qin ◽  
Li Wang ◽  
...  

AbstractThiolase plays important roles in lipid metabolism. It can be divided into degradative thiolases (Thioase I) and biosynthetic thiolases (thiolases II), which are involved in fatty acid β-oxidation and acetoacetyl-CoA biosynthesis, respectively. The Saccharomyces cerevisiae (S. cerevisiae) genome harbors only one gene each for thioase I and thiolase II, namely, Pot1 and Erg10, respectively. In this study, six thiolases (named AoErg10A−AoErg10F) were identified in Aspergillus oryzae (A. oryzae) genome using bioinformatics analysis. Quantitative reverse transcription–PCR (qRT-PCR) indicated that the expression of these six thiolases varied at different growth stages and under different forms of abiotic stress. Subcellular localization analysis showed that AoErg10A was located in the cytoplasm, AoErg10B and AoErg10C in the mitochondria, and AoErg10D-AoErg10F in the peroxisome. Yeast heterologous complementation assays revealed that AoErg10A, AoErg10D, AoErg10E, AoErg10F and cytoplasmic AoErg10B (AoErg10BΔMTS) recovered the phenotypes of S. cerevisiae erg10 weak and lethal mutants, and that only AoErg10D-F recovered the phenotype of the pot1 mutant that cannot use oleic acid as the carbon source. Overexpression of AoErg10s either affected the growth speed or sporulation of the transgenic strains. In addition, the fatty acid and ergosterol content changed in all the AoErg10-overexpressing strains. This study revealed the function of six thiolases in A. oryzae and their effect on growth, and fatty acid and ergosterol biosynthesis, which may lay the foundation for genetic engineering for lipid metabolism in A. oryzae or other fungi.ImportanceThiolase including thioase I and thiolase II, plays important roles in lipid metabolism. A. oryzae, one of the most industrially important filamentous fungi, has been widely used for manufacturing oriental fermented food such as sauce, miso, and sake for a long time. Besides, A. oryzae has a high capability in production of high lipid content and has been used for lipid production. Thus, it is very important to investiagte the function of thiolases in A. oryzae. In this study, six thiolase (named AoErg10A-AoErg10F) were identified by bioinformatics analysis. Unlike other reported thiolases in fungi, three of the six thiolases showed dual function of thioase I and thiolase II in S. cerevisiae, indicating the lipid metabolism is more complex in A. oryzae. The reveal of founction of these thiolases in A. oryzae can lay the foundation for genetic engineering for lipid metabolism in A. oryzae or other fungi.


Sign in / Sign up

Export Citation Format

Share Document