Germplasm Screening and Evaluation Techniques Against Insect Pests

Author(s):  
M. Saravanaraman ◽  
G. D. Prahalada
2018 ◽  
Vol 38 (04) ◽  
pp. 261-273 ◽  
Author(s):  
Jason D. Smith ◽  
Fekadu F. Dinssa ◽  
Robert S. Anderson ◽  
Fu-cheng Su ◽  
Ramasamy Srinivasan

AbstractVegetable and grain amaranths represent a vital source of micronutrients and protein in Asia and Africa. However, various foliar lepidopteran pests and stem-mining weevils hinder amaranth production. Insect-resistant cultivars can enhance the productivity of this crop. Here, we report on the performances of amaranth varieties screened for their resistance to insect pests under the field conditions at The World Vegetable Center stations in Asia and sub-Saharan Africa. We conducted two preliminary screening trials with a total of 263 entries from around the world in Taiwan and a third preliminary screening trial with 49 African-indigenous entries in Tanzania. Promising entries from these preliminary trials were collectively evaluated in an advanced screening trial in Tanzania, to identify lines resistant to foliar and stem-boring pests in East Africa. Four entries exhibited moderate resistance to foliar pests: TZ51 and TZ53 (Amaranthus cruentus), TZ34 (A. dubius) and TZ39 (Amaranthus sp.). Five entries showed moderate resistance to stem weevils: TZ06 and TZ27 (A. cruentus), TZ52 (A. graecizans), TZ59 (A. palmeri) and TZ07 (Amaranthus sp.). Lepidopteran pests affecting leaves were reared to adulthood and identified as Spoladea recurvalis (Crambidae), Spodoptera exigua (Noctuidae) and Spodoptera littoralis (Noctuidae). Stem weevil larvae were also reared and identified as: Neocleonus sannio Herbst, Gasteroclisus pr. rhomboidalis Boheman, Hypolixus pr. haerens Boheman and Baradine sp. (Curculionidae). These results highlight key amaranth pests in East Africa and identify insect-resistant entries that will be useful in breeding programmes and resistance studies.


1933 ◽  
Vol 148 (5) ◽  
pp. 272-273 ◽  
Author(s):  
J. H. Davis
Keyword(s):  

1915 ◽  
Vol 80 (2069supp) ◽  
pp. 130-130
Keyword(s):  

1903 ◽  
Vol 56 (1458supp) ◽  
pp. 23366-23368
Author(s):  
F. M. Webster

EDIS ◽  
2017 ◽  
Vol 2017 (5) ◽  
Author(s):  
Mary C. Bammer ◽  
Josh Campbell ◽  
Chase B. Kimmel ◽  
James D.. Ellis ◽  
Jaret C. Daniels

The establishment of native wildflower plantings in Florida can benefit agricultural producers as well as native pollinators and other beneficial insects (predators and parasitoids). The plantings do this by:  providing forage and nesting sites for bees, butterflies, and other pollinators, increasing wild bee numbers possibly across the farm, and increasing natural enemies of insect pests (that also depend on forage and nesting sites). This document discusses choosing the right mix of native plant species to benefit many pollinator species, as well as proper site selection, planting practices, and weed control techniques. Wildflower plots should be practical to manage, maximize benefits to wildlife, and fit into the overall management practices of the property. 


2020 ◽  
Vol 4 (2) ◽  
pp. 392-400
Author(s):  
O. S. Balogun ◽  
M. A. Damisa ◽  
O. Yusuf ◽  
O. L. Balogun

The study was carried out to examine the effect of agricultural transformation on the beneficiary’s productivity and poverty of rice farmers in Kano State Nigeria. A multi-stage sampling method was employed to select 571 respondents for the study. Data were collected through structured questionnaires on respondent’s income, input and output quantities as well as their expenditures. Data were analysis using descriptive statistics, Foster-Greer-Thorbecke (FGT), Propensity score matching and LATE model. Results from the study shows that respondents productivity revealed a significant difference of about 127 kg/ha in rice productivity between participants and non-participants. Also, the LATE estimates revealed an average treatment effect ATE0 of about 222.98kg/ha. Furthermore, the project had a significant effect N11, 321.4 on the participant’s consumption expenditure than the non-participants N9980.60. Moreover, participants were, able to increase their household total expenditures by N34780 per annum. Fluctuations of input/output prices insect pests and inadequate extension visits were all the major constraints faced by the farmers. It was recommended that farmers’ information and sensitization system should be overhauled and improved. Also, attention should be given to well organize extension visits for the farmers from stake holders


ENTOMON ◽  
2018 ◽  
Vol 43 (4) ◽  
pp. 257-262
Author(s):  
Atanu Seni ◽  
Bhimasen Naik

Experiments were carried out to assess some insecticide modules against major insect pests of rice. Each module consists of a basal application of carbofuran 3G @ 1 kg a.i ha-1 at 20 DAT and Rynaxypyr 20 SC @ 30 g a.i ha-1 at 45 DAT except untreated control. All modules differ with each other only in third treatment which was applied in 65 DAT. The third treatment includes: Imidacloprid 17.8 SL @ 27 g a.i ha-1, Pymetrozine 50 WG @ 150 g a.i ha-1, Triflumezopyrim 106 SC @ 27 g a.i ha-1, Buprofezin 25 SC @ 250 g a.i ha-1; Glamore (Imidacloprid 40+Ethiprole 40% w/w) 80 WG @ 100 g a.i. ha-1, Thiacloprid 24 SC @ 60 g a.i ha-1, Azadirachtin 0.03 EC @ 8 g a.i ha-1, Dinotefuran 20 SG@ 40 g a.i ha-1 and untreated control. All the treated plots recorded significantly lower percent of dead heart, white ear- head caused by stem borer and silver shoot caused by gall midge. Module with Pymetrozine 50 WG @ 150 g a.i ha-1 treated plot recorded significantly higher per cent reduction of plant hoppers (>80% over untreated control) and produced higher grain yield (50.75 qha-1) than the other modules. Among the different treated modules the maximum number of spiders was found in Azadirachtin 0.03 EC @ 8 g a.i ha-1 treated module plot followed by other treatments.


2020 ◽  
Vol 16 (1) ◽  
pp. 25-32
Author(s):  
Basiroh Basiroh ◽  
Wiji Lestari

Errors that occur in solving problems in strawberry plants (Fragaria Xananassa) such as the presence of leaf patches, fruit rot, perforated leaves, and insect pests can be the cause of not maximum in harvest time. The farmers and the general public who planted strawberry (Fragaria Xananassa) need to know the proper treatment of diseases and pests so that future yields as expected. Therefore, it takes an application as a solution in the delivery of information related to the problems that are often encountered in strawberry plants (Fragaria Xananassa). Methods of production rules can be used to diagnose the disease strawberry (Fragaria Xananassa) based on signs or symptoms that occur in the parts of plants and strawberry, the results of diagnosis using this method are the same as we do Consultation on experts.  The purpose of this study was to determine the early diagnosis of disease in strawberry plants (Fragaria Xananassa) based on signs or symptoms that occur in the plant and fruit parts. The results of the analysis of this study showed that the validation of disease and symptom data in strawberry plants (Fragaria Xananassa) reached 99%, meaning that between the data of symptoms and disease understudy the accuracy was guaranteed with the experts.


2020 ◽  
Vol 31 (1) ◽  
pp. 24-35 ◽  
Author(s):  
Somiahnadar Rajendran

Insects are a common problem in stored produce. The author describes the extent of the problem and approaches to countering it. Stored products of agricultural and animal origin, whether edible or non-edible, are favourite food for insect pests. Durable agricultural produce comprising dry raw and processed commodities and perishables (fresh produce) are vulnerable to insect pests at various stages from production till end-use. Similarly, different animal products and museum objects are infested mainly by dermestids. Insect pests proliferate due to favourable storage conditions, temperature and humidity and availability of food in abundance. In addition to their presence in food commodities, insects occur in storages (warehouses, silos) and processing facilities (flour mills, feed mills). Insect infestation is also a serious issue in processed products and packed commodities. The extent of loss in stored products due to insects varies between countries depending on favourable climatic conditions, and pest control measures adopted. In stored food commodities, insect infestation causes loss in quantity, changes in nutritional quality, altered chemical composition, off-odours, changes in end-use products, dissemination of toxigenic microorganisms and associated health implications. The insects contribute to contaminants such as silk threads, body fragments, hastisetae, excreta and chemical secretions. Insect activity in stored products increases the moisture content favouring the growth of moulds that produce mycotoxins (e.g., aflatoxin in stored peanuts). Hide beetle, Dermestes maculatus infesting silkworm cocoons has been reported to act as a carrier of microsporidian parasite Nosema bombycis that causes pebrine disease in silkworms. In dried fish, insect infestation leads to higher bacterial count and uric acid levels. Insects cause damage in hides and skins affecting their subsequent use for making leather products. The trend in stored product insect pest management is skewing in favour of pest prevention, monitoring, housekeeping and finally control. Hermetic storage system can be supplemented with CO2 or phosphine application to achieve quicker results. Pest detection and monitoring has gained significance as an important tool in insect pest management. Pheromone traps originally intended for detection of infestations have been advanced as a mating disruption device ensuing pest suppression in storage premises and processing facilities; pheromones also have to undergo registration protocols similar to conventional insecticides in some countries. Control measures involve reduced chemical pesticide use and more non-chemical inputs such as heat, cold/freezing and desiccants. Furthermore, there is an expanding organic market where physical and biological agents play a key role. The management options for insect control depend on the necessity or severity of pest incidence. Generally, nonchemical treatments, except heat, require more treatment time or investment in expensive equipment or fail to achieve 100% insect mortality. Despite insect resistance, environmental issues and residue problems, chemical control is inevitable and continues to be the most effective and rapid control method. There are limited options with respect to alternative fumigants and the alternatives have constraints as regards environmental and health concerns, cost, and other logistics. For fumigation of fresh agricultural produce, new formulations of ethyl formate and phosphine are commercially applied replacing methyl bromide. Resistance management is now another component of stored product pest management. In recent times, fumigation techniques have improved taking into consideration possible insect resistance. Insect control deploying nanoparticles, alone or as carriers for other control agents, is an emerging area with promising results. As there is no single compound with all the desired qualities, a necessity has arisen to adopt multiple approaches. Cocktail applications or combination treatments (IGRs plus organophosphorus insecticides, diatomaceous earth plus contact insecticides, nanoparticles plus insecticides/pathogens/phytocompounds and conventional fumigants plus CO2; vacuum plus fumigant) have been proved to be more effective. The future of store product insect pest management is deployment of multiple approaches and/or combination treatments to achieve the goal quickly and effectively.


Sign in / Sign up

Export Citation Format

Share Document