Low-Power Subthreshold Adiabatic Logic for Combinational and Sequential Circuits

Author(s):  
Ruchi Yadav ◽  
Amit Bakshi
2019 ◽  
Vol 8 (3) ◽  
pp. 3327-3332

In today's electronic sector, low energy has appeared as a major feature. Power effectiveness is one of the most significant characteristics of contemporary, high-speed and mobile digital devices. Different methods are available to decrease energy dissipation at distinct stages of the planning method and have been applied. As the transistors count per device region continues to rise, while the switching energy does not rise at the same pace, power dissipation increases, and heat removal becomes more hard and costly. The power consumption of electronic appliances can be decreased by using various logic types. For such low-power electronic applications, adiabatic logic mode is very appealing. Using adiabatic logic, distinct powerefficient gates are intended in this document and contrasted for energy dissipation, propagation delay and no of the transistors used. In addition, the circuit developer can use these gates in the combinational and sequential circuits to develop low-power systems. The simulations of these gates are carried out in 90 nm technology using cadence virtuoso instrument.


1996 ◽  
Vol 07 (02) ◽  
pp. 323-340 ◽  
Author(s):  
JOSÉ MONTEIRO ◽  
SRINIVAS DEVADAS ◽  
ABHIJIT GHOSH

Switching activity is a primary cause of power dissipation in combinational and sequential circuits. In this paper, we present a retiming method that targets the power dissipation of a sequential circuit by reducing the switching activity of nodes driving large capacitive loads. We explore the implications of the observation that the switching activity at flip-flop outputs in a synchronous sequential circuit can be significantly less than the activity at the flip-flop inputs. The method automatically determines positions of flip-flops in the circuit so as to heuristically minimize weighted switching activities summed over all the gates and flip-flops in the circuit. We extend this method to minimize power dissipation with a specified clock period. For this work we need to obtain efficiently an estimation of the switching activity of every node in the circuit. We give an exact method of estimating power in pipelined sequential circuits that accurately models the correlation between the vectors applied to the combinational logic of the circuit. This method is significantly more efficient than methods based on solving Chapman–Kolmogorov equations. Experimental results are presented on a variety of circuits.


2015 ◽  
Vol 33 ◽  
pp. 126-136
Author(s):  
Amin Vanak ◽  
Reza Sabbaghi-Nadooshan

In this paper, low power and high speed D-latch and nand gates (as sample of combinational and sequential circuits) are designed based on cnfet and cmos technology. The performance of D-latch and nand is compared in two technologies of 65nm and 90nm in cmos and cnfet technology. The circuit designs are simulated using hspice. Finally, the power consumption and delay and pdp as well as rise and fall time are compared in various voltages and frequencies. The results show that cnfetD-latch and nand gates have better delay and power consumption in comparison to cmos technology.


Sign in / Sign up

Export Citation Format

Share Document