Low power sequential circuits using improved clocked adiabatic logic in 180nm CMOS processes

Author(s):  
Monika Gautam ◽  
Uma Nirmal ◽  
Raina Jain
2010 ◽  
Vol 159 ◽  
pp. 155-161
Author(s):  
Jin Tao Jiang ◽  
Yu Zhang ◽  
Jian Ping Hu

With rapid technology scaling, the proportion of the leakage power catches up with dynamic power gradually. The leakage dissipation through the gate oxide is becoming an important component of power consumption in currently used nanometer CMOS processes without metal gate structure. This paper presents adiabatic sequential circuits using P-type complementary pass-transistor adiabatic logic circuit (P-CPAL) to reduce the gate-leakage power dissipations. A practical sequential system with a mode-10 counter is demonstrated using the P-CPAL scheme. All circuits are simulated using HSPICE under 65nm and 90nm CMOS processes. Simulations show that the mode-10 counter using P-CPAL circuits obtains significant improvement in terms of power consumption over the traditional N-type CPAL counterparts.


2012 ◽  
Vol 1 (2) ◽  
pp. 36-49
Author(s):  
A. Kishore Kumar ◽  
D. Somasundareswari ◽  
V. Duraisamy ◽  
T. Shunbaga Pradeepa

Author(s):  
Ahmed K. Jameil ◽  
Yasir Amer Abbas ◽  
Saad Al-Azawi

Background: The designed circuits are tested for faults detection in fabrication to determine which devices are defective. The design verification is performed to ensure that the circuit performs the required functions after manufacturing. Design verification is regarded as a test form in both sequential and combinational circuits. The analysis of sequential circuits test is more difficult than in the combinational circuit test. However, algorithms can be used to test any type of sequential circuit regardless of its composition. An important sequential circuit is the finite impulse response (FIR) filters that are widely used in digital signal processing applications. Objective: This paper presented a new design under test (DUT) algorithm for 4-and 8-tap FIR filters. Also, the FIR filter and the proposed DUT algorithm is implemented using field programmable gate arrays (FPGA). Method: The proposed test generation algorithm is implemented in VHDL using Xilinx ISE V14.5 design suite and verified by simulation. The test generation algorithm used FIR filtering redundant faults to obtain a set of target faults for DUT. The fault simulation is used in DUT to assess the benefit of test pattern in fault coverage. Results: The proposed technique provides average reductions of 20 % and 38.8 % in time delay with 57.39 % and 75 % reductions in power consumption and 28.89 % and 28.89 % slices reductions for 4- and 8-tap FIR filter, respectively compared to similar techniques. Conclusions: The results of implementation proved that a high speed and low power consumption design can be achieved. Further, the speed of the proposed architecture is faster than that of existing techniques.


2015 ◽  
Vol 62 (1) ◽  
pp. 149-156 ◽  
Author(s):  
Moshe Avital ◽  
Hadar Dagan ◽  
Itamar Levi ◽  
Osnat Keren ◽  
Alexander Fish

Sign in / Sign up

Export Citation Format

Share Document