Development of Low-Cost Wind Power Estimation System in Enggano Island Indonesia

Author(s):  
Novalio Daratha ◽  
Indra Agustian ◽  
Dedi Suryadi ◽  
Agus Suandi ◽  
Neeraj Gupta
2021 ◽  
Vol 1858 (1) ◽  
pp. 012049
Author(s):  
Agus Supardi ◽  
Mukhlisin Yoga Raya ◽  
rian Shaiful Anwar

2011 ◽  
Vol 148-149 ◽  
pp. 97-100
Author(s):  
Xu Gang Wang ◽  
Guang Qi Cao ◽  
Zhi Guang Guan ◽  
Zu Yu Zhao

Wind power is an important direction of new energy, which has no pollution, no consuming fossil fuels, and no producing waste, which is widely used at this stage of clean energy. The small stand alone wind power has been paid more and more attention due to its low cost, flexible installation, strong adaptability. This paper introduces the mechanical and electrical structure, which are used in KW level stand alone mode wind turbine automatically track and yaw system. The motion rules and control strategies of the tracking and yaw system are discussed and then the control program flow is provided. The PIC16F873 chip is used as controller for this part in this system. It can fully meet the design requirements, which will reduce costs and increase the system's control ability. This system can automatically track and yaw, according to the wind direction and wind power.


Sensors ◽  
2020 ◽  
Vol 20 (15) ◽  
pp. 4093
Author(s):  
Alimed Celecia ◽  
Karla Figueiredo ◽  
Marley Vellasco ◽  
René González

The adequate automatic detection of driver fatigue is a very valuable approach for the prevention of traffic accidents. Devices that can determine drowsiness conditions accurately must inherently be portable, adaptable to different vehicles and drivers, and robust to conditions such as illumination changes or visual occlusion. With the advent of a new generation of computationally powerful embedded systems such as the Raspberry Pi, a new category of real-time and low-cost portable drowsiness detection systems could become standard tools. Usually, the proposed solutions using this platform are limited to the definition of thresholds for some defined drowsiness indicator or the application of computationally expensive classification models that limits their use in real-time. In this research, we propose the development of a new portable, low-cost, accurate, and robust drowsiness recognition device. The proposed device combines complementary drowsiness measures derived from a temporal window of eyes (PERCLOS, ECD) and mouth (AOT) states through a fuzzy inference system deployed in a Raspberry Pi with the capability of real-time response. The system provides three degrees of drowsiness (Low-Normal State, Medium-Drowsy State, and High-Severe Drowsiness State), and was assessed in terms of its computational performance and efficiency, resulting in a significant accuracy of 95.5% in state recognition that demonstrates the feasibility of the approach.


Author(s):  
Soojin Cho ◽  
Jerome Peter Lynch ◽  
Chung-Bang Yun

Cable tension force is one of the most important structural parameters to monitor in cable-stayed bridges. For example, cable tension needs to be monitored during construction and maintenance to ensure the bridge is not overloaded. To economically monitor tension forces, this study proposes the use of an automated wireless tension force estimation system (WFTES) developed solely for cable force estimation. The design of the WFTES system can be divided into two parts: low-cost hardware and automated software. The low-cost hardware consists of an integrated platform containing a wireless sensing unit constructed from commercial off-the-shelf components, a low-cost commercial MEMS accelerometer, and a signal conditioning board for signal amplification and filtering. With respect to the automated software, a vibration-based algorithm using estimated modal parameters and information on the cable sag and bending stiffness is embedded into the wireless sensing unit. Since modal parameters are inputs to the algorithm, additional algorithms are necessary to extract modal features from measured cable accelerations. To validate the proposed WFTES, a scaled-down cable model was constructed in the laboratory using steel rope wire. The wire was exposed to broad-band excitations while the WFTES recorded the cable response and embedded algorithms interrogated the measured acceleration to estimate tension force. The results reveal the embedded algorithms properly identify the lower natural frequencies of the cable and make accurate estimates of cable tension. This paper concludes with a summary of the salient research findings and suggestions for future work.


Nature ◽  
1985 ◽  
Vol 314 (6013) ◽  
pp. 755-756 ◽  
Author(s):  
D. N. BAKER ◽  
L. F. BARGATZE

2014 ◽  
Vol 984-985 ◽  
pp. 764-773 ◽  
Author(s):  
J. Jane Justin Brintha ◽  
S. Rama Reddy ◽  
N. Subashini

The micro wind power generation system is used to generate the power at low cost. In this paper, generator fed SEPIC, Z source inverter based systems are presented. The unique feature of Z source inverter is shoot-through duty cycle control by which any desired output voltage even greater than input line voltage is possible. Both buck-boost capabilities in single stage conversion are possible. This is not possible in conventional inverters. Also conversion losses are reduced in Z-source inverter due to single stage conversion which increases the output voltage of the system. Keywords: micro-wind power generation system, Single-Ended Primary Inductor converter, Z source inverter.


Sign in / Sign up

Export Citation Format

Share Document