Ultimate Load Behaviour of Segmental Composite Slabs at Different Shear Connectors

Author(s):  
N. R. Gowthami ◽  
K. Ramanjaneyulu ◽  
K. Ajaykumar Reddy
2020 ◽  
pp. 136943322098166
Author(s):  
Weiwei Lin

In this study, straight composite steel-concrete beams were tested to investigate their mechanical performance under combined negative bending and torsional moments. Two specimens were used in this study, and different ratios between the applied negative bending and torsional moments were induced. Load and deflection relationships, strain development on the steel main girder and shear connectors (stud), and the slip development on the steel-concrete interface were recorded in the test and reported in this paper. The results indicate that increase of torsional moment will result in the significant decrease of the load-carrying capacities (e.g. yield load and ultimate load) of the specimens. It was also found that the normal strains of stud shear connectors in such beams are very large and non-negligible compared to their shear strains. In addition, the maximum interface slip was found occurring at around the 1/4 span, and the support conditions and serious crack of the concrete were considered to be the main causes. The research results obtained in this study can provide references for the design and analysis of steel-concrete composite beams subjected to the combined negative bending and torsional moments.


Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 229
Author(s):  
Siva Avudaiappan ◽  
Erick I. Saavedra Flores ◽  
Gerardo Araya-Letelier ◽  
Walter Jonathan Thomas ◽  
Sudharshan N. Raman ◽  
...  

An experimental investigation is performed on various cold-formed profiled sheets to study the connection behavior of composite deck slab actions using bolted shear connectors. Various profiles like dovetailed (or) re-entrant profiles, rectangular profiles and trapezoidal profiles are used in the present investigation. This experimental investigation deals with the evaluation of various parameters such as the ultimate load carrying capacity versus deflection, load versus slip, ductility ratio, strain energy and modes of failure in composite slab specimens with varying profiles. From the test results the performance of dovetailed profiled composite slabs’ resistance is significantly higher than the other two profiled composite deck slabs.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
K. N. Lakshmikandhan ◽  
P. Sivakumar ◽  
R. Ravichandran ◽  
S. Arul Jayachandran

The strength of the composite deck slab depends mainly on the longitudinal shear transfer mechanism at the interface between steel and concrete. The bond strength developed by the cement paste is weak and causes premature failure of composite deck slab. This deficiency is effectively overcame by a shear transferring mechanism in the form of mechanical interlock through indentations, embossments, or fastening studs. Development of embossment patterns requires an advanced technology which makes the deck profile expensive. Fastening studs by welding weakens the joint strength and also escalates the cost. The present investigation is attempted to arrive at a better, simple interface mechanism. Three types of mechanical connector schemes are identified and investigated experimentally. All of the three shear connector schemes exhibited full shear interaction with negligible slip. The strength and stiffness of the composite slabs with shear connectors are superior about one and half time compared to these of the conventional reinforced concrete slabs and about twice compared to these of composite slabs without mechanical shear connectors. The scheme2 and scheme3 shear connector mechanisms integrate deck webs and improve strength and stiffness of the deck, which can effectively reduce the cost of formworks and supports efficiently.


2011 ◽  
Vol 8 (1) ◽  
pp. 29-34
Author(s):  
M. Youcef ◽  
M. Mimoune ◽  
F. Mimoune

This paper describes the reliability analysis of shear connection in composite beams with profiled steel sheeting. The profiled steel sheeting had transverse ribs perpendicular to the steel beam. The level of safety of shear connection, and failure modes were determinate. An extensive parametric study was conducted to study the effects on the safety and behaviour of shear connection by changing the profiled steel sheeting geometries, the diameter and height of headed stud, as well as the strength of concrete. We compared the level safety calculated using the American specification, British standard and European code for headed stud shear connectors in composite slabs with profiled steel sheeting perpendicular to the steel beam. It is found that the design overestimated the level safety of shear connection.


2017 ◽  
Vol 21 (9) ◽  
pp. 1288-1301 ◽  
Author(s):  
Alireza Gholamhoseini ◽  
Amir Khanlou ◽  
Gregory MacRae ◽  
Stephen Hicks ◽  
Allan Scott ◽  
...  

An experimental study was conducted on reinforced and steel fibre–reinforced concrete composite slabs with steel decking under negative bending moment to quantify the ultimate behaviour, loading capacity and crack width under short-term loading. Eight full-scale slab specimens were cast with different types and amounts of reinforcement in the concrete (e.g. mesh, steel fibre or normal reinforcing bars) but with the same type of steel decking. Each slab was simply supported and tested in four-point bending under increasing load until failure. The deflections at mid-span and under the applied point loads were monitored together with the end interface slip. The crack widths were obtained for each slab for different levels of applied load. It was found that the end slip was quite negligible and complete interaction on the steel decking–concrete slab interface existed at service loads and ultimate limit states. Compared to the slab with 20 kg/m3 steel fibre, the application of steel fibre in excess of 60 kg/m3 increased the rotational capacity and ultimate load by 60% and 80%, respectively. Moreover, the higher dosage of steel fibres resulted in improved crack control, as for the same level of applied load, the crack width was often reduced by 75%. However, the slabs with conventional high-strength ductile reinforcements had the greatest ultimate load and rotational capacity and exhibited the best degree of crack control with finer and more distributed cracks.


Materials ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2551 ◽  
Author(s):  
Jing Lv ◽  
Tianhua Zhou ◽  
Hanheng Wu ◽  
Liurui Sang ◽  
Zuoqian He ◽  
...  

A composite slab comprised of self-compacting rubber lightweight aggregate concrete (SCRLC) and profiled steel sheeting is a new type of structural element with a series of superior properties. This paper presents an experimental research and finite element analysis (FEA) of the flexural behavior of composite slabs consisting of SCRLC to develop a new floor system. Four composite slabs specimens with different shear spans (450 mm and 800 mm) and SCRLC (0% and 30% in rubber particles substitution ratio) are prepared, and the flexural properties including failure modes, deflection at mid-span, profiled steel sheeting, and concrete surface stain at mid-span and end slippage are investigated by four-point bending tests. The experimental results indicate that applying SCRLC30 in composites slabs will improve the anti-cracking ability under the loading of composite slabs compared with composite slabs consisting of self-compacting lightweight aggregate concrete (SCLC). FEM on the flexural properties of SCRLC composites slabs show that the yield load, ultimate load, and deflection corresponding to the yield load and the ultimate load of composite slabs drop as the rubber particles content increases in SCRLC. The variation of SCRLC strength has less impact on the flexural bearing capacity of corresponding composite slabs. Based on the traditional calculated method of the ultimate bending moment of normal concrete (NC) composite slabs, a modified calculated method for the ultimate bending moment of SCRLC composite slabs is proposed.


2014 ◽  
Vol 1065-1069 ◽  
pp. 1129-1133
Author(s):  
Wei Xu ◽  
Rui Ya Xiao ◽  
Xiao Bo Chang ◽  
Ji Zhong Wang ◽  
Guo Chang Li

The simulation of Profiled Steel Sheeting-concrete Composite Slabs is based on ABAQUS,the finite element simulation software.The simulation is compared with the test to verify correctness of the finite element simulation method.By changing shear connectors of composite slabs, studies are performed on the influence of shear-bond property ,the behavior of slip between sheeting and concrete,slip distribution along the composite slabs and so on.The results indicate that setting shear connectors ,such as shear reinforcement and studs, can improve ultimate bearing capacity and reduce the slippage between the interface.The studs’ effect is more obvious.Actual engineering should select suitable shear connectors,so that it can meet the strength requirement and be economical.


2014 ◽  
Vol 67 (3) ◽  
pp. 253-258 ◽  
Author(s):  
Gilson Queiroz ◽  
Hermes Carvalho ◽  
Francisco Rodrigues ◽  
Michèle Pfeilo

A shear connector, developed to be applied to a composite beam whose steel profile is a thin-walled box profile, displayed much greater flexibility than the conventional welded shear connector, leading to particular issues in the composite beam behaviour. One of these issues is the role played by friction at the interface between the steel profile and the slab which, under particular circumstances, may be relevant for serviceability limit states and also for ultimate limit states. The Brazilian and American Standards do not yet recognize the friction contribution in the behaviour of composite beams, though they recognize this contribution in composite slabs. This paper presents the experimental tests carried out with and without friction contribution on simple supported composite beams with flexible connectors and the numerical models developed to simulate the behaviour of the tested beams. The experimental tests revealed significant increases in strength and stiffness of the composite beam due to friction contribution and the comparisons between numerical and experimental results displayed good correlations.


Sign in / Sign up

Export Citation Format

Share Document