Simulation of Homogeneous Particle Size in Fluid Flow by Using DPM-DEM

Author(s):  
Nurhanani A. Aziz ◽  
M. H. Zawawi ◽  
N. M. Zahari ◽  
Aizat Abas ◽  
Aqil Azman
2019 ◽  
Vol 92 ◽  
pp. 02015
Author(s):  
Shijin Li ◽  
Adrian R. Russell

Internal erosion (suffusion) is caused by water seeping through the matrix of coarse soil and progressively transporting out fine particles. The mechanical strength of soils within water retaining structures may be affected after internal erosion occurs. However, most experimental investigations on the mechanical consequences of internal erosion have used triaxial tests on samples having nonhomogeneous particle size distributions along their lengths. Such nonhomogeneities arise from the most commonly used sample formation procedure, in which seeping water enters one end of a sample and washes fine particles out the other. In this paper a new soil sample formation procedure is presented which results in homogeneous particle size distributions along the direction of seepage, that is at all locations along a sample's length.


2020 ◽  
Vol 57 (11) ◽  
pp. 1684-1694
Author(s):  
Shijin Li ◽  
Adrian R. Russell ◽  
David Muir Wood

Internal erosion (suffusion) is caused by water seeping through the matrix of coarse soil and progressively transporting out fine particles. The mechanical strength and stress–strain behavior of soils within water-retaining structures may be affected by internal erosion. Some researchers have set out to conduct triaxial erosion tests to study the mechanical consequences of erosion. Prior to conducting a triaxial test they subject a soil sample, which has an initially homogeneous particle-size distribution and density throughout, to erosion by causing water to enter one end of a sample and wash fine particles out the other. The erosion and movement of particles causes heterogeneous particle-size distributions to develop along the sample length. In this paper, a new soil sample formation procedure is presented that results in homogeneous particle-size distributions along the length of an eroded sample. Triaxial tests are conducted on homogeneous samples formed using the new procedure as well as heterogeneous samples created by the more commonly used approach. Results show that samples with homogeneous post-erosion particle-size distributions exhibit slightly higher peak deviator stresses than those that were heterogeneous. The results highlight the importance of ensuring homogeneity of post-erosion particle-size distributions when assessing the mechanical consequences of erosion. Forming samples using the new procedure enables the sample’s response to triaxial loading to be interpreted against a measure of its initially homogenous state.


2008 ◽  
Vol 589 ◽  
pp. 79-84 ◽  
Author(s):  
Gábor Buza ◽  
Viktória Janó ◽  
Mária Svéda ◽  
Olga Verezub ◽  
Zoltán Kálazi ◽  
...  

In the present study the analysis of 5 different mechanisms of porosity formation during laser melt injection (LMI) technology were performed. Experiments were supported by thermodynamic and fluid-flow analysis. Special attention should be paid to i. clean the surface of the substrate, ii. use inert shielding gas, iii. use proper particle size and gas velocity, iv. use proper laser power and laser beam velocity to control bath temperature and v. deoxidize the surface of the added particles.


1985 ◽  
Vol 65 (1) ◽  
pp. 69-76 ◽  
Author(s):  
K. CHAI ◽  
L. P. MILLIGAN ◽  
P. M. KENNEDY ◽  
G. W. MATHISON

Three closely shorn sheep were allotted to each of three diets of chopped hay prepared from red clover, reed canarygrass and bromegrass, respectively. The animals were housed at 25, 10 and −5 °C during three periods of 28 days. For the final 8 days of each period, each individual sheep was restricted to 90% of its voluntary feed consumption and hay was given at intervals of 2 h. Eating and chewing behavior, rumen fluid kinetics and digesta particle size were determined. Voluntary intake of clover hay was greater, but chews during eating and rumination were less than for sheep consuming grass hay. The small particle fractions present in the duodenum and rumination activity were greater in the sheep fed grasses. Feed intake, rumination chews and duration, and digesta particle size in the duodenum were increased in sheep housed at −5 °C. Eating duration and chews, particle size of rumen digesta and rumen fluid volume were not affected by cold stress, but fluid retention time was reduced, while daily fluid flow from the rumen tended to increase. Key words: Forage intake, cold stress, chewing behavior, digesta particle size, fluid passage


Author(s):  
Pei Fu ◽  
Yuansheng Song ◽  
Jian Yang ◽  
Qiuwang Wang

Abstract Gradient particle size anode has shown great potential in improving the electrical performance of anode-supported solid oxide fuel cells (SOFCs). In the present study, a 3-D comprehensive model is established to study the effect of various gradient particle size distribution on the cell electrical performance for the anode microstructure optimization. The effect of homogeneous particle size on the cell performance is studied first. The maximum current density of homogeneous anode SOFC is obtained for the comparison with the electrical performance of gradient anode SOFC. Then the effect of various gradient particle size distribution on the cell molar fraction and polarization losses distribution is analyzed and discussed in detail. Increasing the particle diameter gradient can effectively reduce the anodic concentration overpotential. Decreasing the particle diameter of AFL2 is beneficial to reducing the activation and ohmic overpotentials. On these bases, the comprehensive electrical performances of SOFCs with gradient particle size anode and homogeneous anode are compared to highlight the optimal gradient particle diameter distribution. In the studied cases of the present work, the gradient particle diameter of 0.7 μm, 0.4 μm and 0.1 μm at ASL, AFL1 and AFL2 (Case 3) is the optimal particle size distribution.


2015 ◽  
Vol 816 ◽  
pp. 676-681 ◽  
Author(s):  
Xiao Long Qu ◽  
Zheng Fu Zhang ◽  
Jin Cheng ◽  
Xiao Yan Wang

The spherical Ni0.5Co0.2Mn0.3(OH)2 powders were prepared by ammonia-hydroxide co-precipitation method. The influence of different synthesizing factors on the precursors characteristic were investigated. The product prepared with optimized condition has tap density of D≥1.7g·cm-3, and middle particle size D50≈3.6μm. The X-ray diffraction (XRD) results showed that the precursor can be indexed by a hexagonal β-Ni (OH)2 structure. The scanning electron microscope (SEM) results showed that the powders had quasi-spherical pattern and homogeneous particle size distribution.


2013 ◽  
Vol 765 ◽  
pp. 42-46 ◽  
Author(s):  
Florian Brunke ◽  
Eike Meyer-Kornblum ◽  
Carsten Siemers

The addition of the rare earth metal Lanthanum to (α+β)-Titanium alloys like Ti 6Al 4V or Ti 6Al 7Nb improves their machinability as short chips form during machining. In related alloys, metallic Lanthanum is distributed as micrometer-size particles which are mainly located at the grain boundaries. In case Iron is present in Lanthanum containing (α+β)-Titanium alloys, a more homogeneous particle distribution is observed leading to improved ductility at room temperature and elevated temperature compared to Iron-free alloys. In the present study, the influence of Iron on the Lanthanum particle size and distribution was investigated in the system Ti 6Al 7Nb xFe 0.9La. First, the solidification behaviour was simulated. Afterwards, alloys with different amounts of Iron (0.25 %, 0.5 % and 1.0 %) were produced. The microstructure of these alloys as well as their deformability and mechanical properties at room temperature were analyzed which were improved compared to the Iron-free Ti 6Al 7Nb 0.9La and Ti 6Al 4V 0.9La alloys.


Sign in / Sign up

Export Citation Format

Share Document