Thermal Band Theory

2020 ◽  
pp. 83-93
Author(s):  
Ji-Ping Huang
Keyword(s):  
Author(s):  
Xudong Weng ◽  
O.F. Sankey ◽  
Peter Rez

Single electron band structure techniques have been applied successfully to the interpretation of the near edge structures of metals and other materials. Among various band theories, the linear combination of atomic orbital (LCAO) method is especially simple and interpretable. The commonly used empirical LCAO method is mainly an interpolation method, where the energies and wave functions of atomic orbitals are adjusted in order to fit experimental or more accurately determined electron states. To achieve better accuracy, the size of calculation has to be expanded, for example, to include excited states and more-distant-neighboring atoms. This tends to sacrifice the simplicity and interpretability of the method.In this paper. we adopt an ab initio scheme which incorporates the conceptual advantage of the LCAO method with the accuracy of ab initio pseudopotential calculations. The so called pscudo-atomic-orbitals (PAO's), computed from a free atom within the local-density approximation and the pseudopotential approximation, are used as the basis of expansion, replacing the usually very large set of plane waves in the conventional pseudopotential method. These PAO's however, do not consist of a rigorously complete set of orthonormal states.


2020 ◽  
Vol 16 (4) ◽  
pp. 715-729
Author(s):  
T.N. Savina

Subject. To achieve a high level of economic security is a key priority of national development. Employment reveals one of the most important aspects of social development of the individual that is associated with his or her needs satisfaction in the sphere of employment and is boon to economic security. Objectives. The purpose of the study is to show the impact of unemployment on economic security in employment. Methods. I apply such scientific methods as dialectical, historical and logical unity, structural and functional analysis, traditional techniques of economic analysis and synthesis. The methods of multivariate statistical and comparative analysis serve as a methodological basis of the study. To determine the indicator of unemployment, I use the band theory. Results. I underpin the growing role of employment in ensuring economic security. The paper presents a comprehensive assessment of the unemployment status and a comparative analysis of the indicator in the Republic of Mordovia, the Volga Federal District, and the Russian Federation as a whole. I identify trends in the average duration of unemployment, show the distribution of unemployed by level of education and age groups. Conclusions. The average annual unemployment rate in the Republic of Mordovia is lower than in Russia and the Volga Federal District. The findings may be useful for public authorities to substantiate their employment policy at both macro- and meso-levels, for designing programs and strategies for socio-economic development of regions and the social security doctrine, as well as in practical activities of employment services.


2020 ◽  
Author(s):  
Gabriel Freire Sanzovo Fernandes ◽  
Leonardo dos Anjos Cunha ◽  
Francisco Bolivar Correto Machado ◽  
Luiz Ferrão

<p>Chemical bond plays a central role in the description of the physicochemical properties of molecules and solids and it is essential to several fields in science and engineering, governing the material’s mechanical, electrical, catalytic and optoelectronic properties, among others. Due to this indisputable importance, a proper description of chemical bond is needed, commonly obtained through solving the Schrödinger equation of the system with either molecular orbital theory (molecules) or band theory (solids). However, connecting these seemingly different concepts is not a straightforward task for students and there is a gap in the available textbooks concerning this subject. This work presents a chemical content to be added in the physical chemistry undergraduate courses, in which the framework of molecular orbitals was used to qualitatively explain the standard state of the chemical elements and some properties of the resulting material, such as gas or crystalline solids. Here in Part 1, we were able to show the transition from Van der Waals clusters to metal in alkali and alkaline earth systems. In Part 2 and 3 of this three-part work, the present framework is applied to main group elements and transition metals. The original content discussed here can be adapted and incorporated in undergraduate and graduate physical chemistry and/or materials science textbooks and also serves as a conceptual guide to subsequent disciplines such as quantum chemistry, quantum mechanics and solid-state physics.</p>


Entropy ◽  
2021 ◽  
Vol 23 (2) ◽  
pp. 223
Author(s):  
Yen-Ling Tai ◽  
Shin-Jhe Huang ◽  
Chien-Chang Chen ◽  
Henry Horng-Shing Lu

Nowadays, deep learning methods with high structural complexity and flexibility inevitably lean on the computational capability of the hardware. A platform with high-performance GPUs and large amounts of memory could support neural networks having large numbers of layers and kernels. However, naively pursuing high-cost hardware would probably drag the technical development of deep learning methods. In the article, we thus establish a new preprocessing method to reduce the computational complexity of the neural networks. Inspired by the band theory of solids in physics, we map the image space into a noninteraction physical system isomorphically and then treat image voxels as particle-like clusters. Then, we reconstruct the Fermi–Dirac distribution to be a correction function for the normalization of the voxel intensity and as a filter of insignificant cluster components. The filtered clusters at the circumstance can delineate the morphological heterogeneity of the image voxels. We used the BraTS 2019 datasets and the dimensional fusion U-net for the algorithmic validation, and the proposed Fermi–Dirac correction function exhibited comparable performance to other employed preprocessing methods. By comparing to the conventional z-score normalization function and the Gamma correction function, the proposed algorithm can save at least 38% of computational time cost under a low-cost hardware architecture. Even though the correction function of global histogram equalization has the lowest computational time among the employed correction functions, the proposed Fermi–Dirac correction function exhibits better capabilities of image augmentation and segmentation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chanhee Kim ◽  
Dilip Bhoi ◽  
Yeahan Sur ◽  
Byung-Gu Jeon ◽  
Dirk Wulferding ◽  
...  

AbstractIn order to understand the superconducting gap nature of a $$\hbox {2H-Pd}_{0.08} \hbox {TaSe}_2$$ 2H-Pd 0.08 TaSe 2 single crystal with $$T_{c} = 3.13 \text { K}$$ T c = 3.13 K , in-plane thermal conductivity $$\kappa $$ κ , in-plane London penetration depth $$\lambda _{\text {L}}$$ λ L , and the upper critical fields $$H_{c2}$$ H c 2 have been investigated. At zero magnetic field, it is found that no residual linear term $$\kappa _{0}/T$$ κ 0 / T exists and $$\lambda _{\text {L}}$$ λ L follows a power-law $$T^n$$ T n (T: temperature) with n = 2.66 at $$T \le \frac{1}{3}T_c$$ T ≤ 1 3 T c , supporting nodeless superconductivity. Moreover, the magnetic-field dependence of $$\kappa _{0}$$ κ 0 /T clearly shows a shoulder-like feature at a low field region. The temperature dependent $$H_{c2}$$ H c 2 curves for both in-plane and out-of-plane field directions exhibit clear upward curvatures near $$T_c$$ T c , consistent with the shape predicted by the two-band theory and the anisotropy ratio between the $$H_{c2}$$ H c 2 (T) curves exhibits strong temperature-dependence. All these results coherently suggest that $$\hbox {2H-Pd}_{0.08} \hbox {TaSe}_2$$ 2H-Pd 0.08 TaSe 2 is a nodeless, multiband superconductor.


2021 ◽  
Vol 103 (16) ◽  
Author(s):  
Kazuki Yokomizo ◽  
Shuichi Murakami
Keyword(s):  

1997 ◽  
Vol 102 (D10) ◽  
pp. 11145-11164 ◽  
Author(s):  
Vicente Caselles ◽  
Enric Valor ◽  
César Coll ◽  
Eva Rubio

2010 ◽  
Vol 7 (6) ◽  
pp. 1658-1660 ◽  
Author(s):  
Witold Bardyszewski
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document