Study on the Standard Boundary of Subdivision Water Injection in Extra High Water Cut Period

Author(s):  
Jixiang Lin
2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Zhiwang Yuan ◽  
Zhiping Li ◽  
Li Yang ◽  
Yingchun Zhang

When a conventional waterflooding characteristic curve (WFCC) is used to predict cumulative oil production at a certain stage, the curve depends on the predicted water cut at the predicted cutoff point, but forecasting the water cut is very difficult. For the reservoirs whose pressure is maintained by water injection, based on the water-oil phase seepage theory and the principle of material balance, the equations relating the cumulative oil production and cumulative water injection at the moderately high water cut stage and the ultrahigh water cut stage are derived and termed the Yuan-A and Yuan-B curves, respectively. And then, we theoretically analyze the causes of the prediction errors of cumulative oil production by the Yuan-A curve and give suggestions. In addition, at the ultrahigh water cut stage, the Yuan-B water cut prediction formula is established, which can predict the water cut according to the cumulative water injection and solve the difficult problem of water cut prediction. The application results show Yuan-A and Yuan-B curves are applied to forecast oil production based on cumulative water injection data obtained by the balance of injection and production, avoiding reliance on the water cut forecast and solving the problems of predicting the cumulative oil production of producers or reservoirs that have not yet shown the decline rule. Furthermore, the formulas are simple and convenient, providing certain guiding significance for the prediction of cumulative oil production and water cut for the same reservoir types.


2012 ◽  
Vol 424-425 ◽  
pp. 732-736 ◽  
Author(s):  
De Li Jia ◽  
Feng Shan Wang ◽  
Shu Jin Zhang

The layered recovery technology has been applied to the heterogeneous multi-layer standstone oilfields for many years. However, as these standstone oilfields have been entering into the ultra-high water cut period, the conventional layered water injection technology has too long test and adjustment period and heavy workload and cannot determine the reservoir condition. To solve this problem, this paper proposes and develops an intelligent multi-layer water injection technology suitable for the ultra-high water cut period based on the synchronous dynamic test and adjustment idea. The whole flow adjustment process has no any intervention and the synchronous dynamic flow adjustment of each layer finishes by the digital clock calibration thereby avoiding interlayer interference. This technology also can obtain data by the redisplay of computer. The experimental results show that this technology not only improves water injection effect and reduces the field workload, but also provides the basis of data analysis for implementation and adjustment of meticulous oil development plan


Author(s):  
Yanlai Li ◽  
Jie Tan ◽  
Songru Mou ◽  
Chunyan Liu ◽  
Dongdong Yang

AbstractFor offshore reservoirs with a big bottom water range, the water cut rises quickly and soon enters the ultra-high water cut stage. After entering the ultra-high water cut stage, due to the influence of offshore production facilities, there are few potential tapping measures, so it is urgent to explore the feasibility study of artificial water injection development. The quasi-three-dimensional and two-dimensional displacement experiments are designed using the experimental similarity criteria according to the actual reservoir parameters. Several experimental schemes are designed, fluid physical properties, interlayer distribution, and development mode according to the actual reservoir physical properties. Through the visualization of experimental equipment, the bottom water reservoir is visually stimulated. The displacement and sweep law of natural water drive and artificial water injection in bottom water reservoir with or without an interlayer, different viscosity, and different well spacing is analyzed. The following conclusions are obtained: (1) For reservoirs with a viscosity of 150 cp. The recovery factor after water injection is slightly higher than before water injection. However, the recovery factor is lower than that without injection production. The reason is that the increment of injection conversion is limited to reduce one production well after injection conversion. (2) For reservoirs with a viscosity of 30 cp. The recovery factor after injection is 39.8%, which is slightly higher than 38.9% without injection. (3) For reservoirs with a viscosity of 150 cp. In the case of the interlayer. The recovery factor after injection is 30.7%, which is significantly higher than 24.8% without injection. (4) After the well spacing of the low-viscosity reservoir is reduced, the recovery factor reaches 46.1%, which is higher than 38.9% of the non-infill scheme. After the infill well in a low-viscosity reservoir is transferred to injection, the recovery factor is 45.6%, which has little change compared with non-injection, and most of the cumulative production fluid is water. The feasibility and effect of water flooding in a strong bottom water reservoir are demonstrated. This study provides the basis for the proposal of production well injection conversion and the adjustment of production parameters in the highest water cut stage of a big bottom water reservoir.


Author(s):  
Kuiqian Ma ◽  
Ao Li ◽  
Shuhao Guo ◽  
Jieqiong Pang ◽  
Yongchao Xue ◽  
...  

The multi-layer co-exploitation method is often used in offshore oilfields because of the large spacing between the injection and production wells. As oilfields gradually enter the high water-cut stage, the contradiction between the horizontal and vertical directions becomes more prominent, and the distribution of the remaining oil is more complex. Oilfields are facing unprecedented challenges in further enhancing oil recovery. Using oilfield A, which is in the high water-cut stage, as the research object, we compiled a detailed description of the remaining oil during the high water-cut stage using the information collected during the comprehensive adjustment and infilling of the oilfield. In addition various techniques for tapping the potential reservoir, stabilizing the oil, and controlling the water were investigated. A set of key techniques for the continuous improvement of the efficiency of water injection after comprehensive adjustment of high water-cut fields was generated. Based on the determined configuration of the offshore deltaic reservoir, a set of detailed descriptive methods and tapping technology for extracting the remaining oil in the offshore high water-cut oilfield after comprehensive adjustment was established. By considering the equilibrium displacement and using a new quantitative characterization method that includes displacement, a new technique for determining the quantity of water that needs to be injected into a stratified injection well during the high water-cut stage was established. Based on the principle of flow field intensity reconfiguration, a linear, variable-intensity, alternating injection and withdrawal technique was proposed. With the application of this series of techniques, the increase in the water content was controlled to within 1%, the natural reduction rate was controlled to within 9%, and the production increased by 1.060 × 107 m3.


2014 ◽  
Vol 900 ◽  
pp. 677-680
Author(s):  
Chun Hong Nie

This paper has discussed the characteristics, roles, feasibility and obvious effects of the technology by applying electric field to enhance oil recovery when the oil field is in high water cut stage and super high water cut stage. In view that most oil wells in old oil field have entered into the super high water cut production, the remaining oil in the main reservoir is in fragmented distribution with poor results of water injection and new reserves of oil mostly have a low penetration rate and are thin layers of poor physical properties, the use of the direct current field in period of high water cut is the best policy to achieve high and stable yield and is fairly promising.


2021 ◽  
Vol 329 ◽  
pp. 01048
Author(s):  
Wentao Liu ◽  
Xiaodong Wang ◽  
Chaoliang Zhang ◽  
Rui Xue ◽  
Guifang Zhu ◽  
...  

In view of the problem that water cut rises quickly in conglomerate reservoirs with high water cut, based on the variation law of reservoir water injection and liquid production characteristics, a method for determining the maximum liquid production scale in conglomerate reservoirs with high water cut is established by using reservoir engineering and field statistics.Considering the maximum liquid production capacity at the well end, the maximum injection capacity at the well end and the injecting-production ratio limit to keep the formation energy, a method to determine the maximum liquid production scale in conglomerate reservoir is established to keep the formation energy sufficient.This method ensures that the injection and production ends of the reservoir are coordinated and matched, and the formation energy is sufficient, so that the reservoir development keeps a benign cycle.The research method and conclusion have important reference value and significance for theoretical research and practical application of ultra-high water cut oilfield development.


2010 ◽  
Vol 44-47 ◽  
pp. 1476-1481 ◽  
Author(s):  
De Li Jia ◽  
Chang Jiang Zhao ◽  
Shu Jin Zhang ◽  
Ming Xin Zhao ◽  
De Kui Xu

To solve the problem that the conventional layered water injection technology has too long test and adjustment period and strong interference among layers at the ultra-high water cut stage, a novel digital synchronous dynamic test and adjustment technology is proposed and developed in this paper. Many advanced technologies, including digital multi-information test and adjustment, bidirectional transmission of remote wireless signals and non-contact electric energy transformation, are adopted to combine multi-information test and flow control to be a whole thrown into the well. This technology can automatically monitor each water injection layer and adjust water flow in user-defined period without any intervention; it can synchronously and dynamically adjust flow of each layer; and it also can monitor and adjust flow data by the redisplay of computer. The experimental results show that this technology not only reduces the field workload and improves water injection effect, but also provides the basis of data analysis for implementation and adjustment of meticulous oil development plan.


Author(s):  
Anzhu Xu ◽  
Fachao Shan ◽  
Xiao Yang ◽  
Jiaqi Li ◽  
Chenggang Wang ◽  
...  

AbstractChanneling between injectors and producers leads to bypassed oil left in the reservoir, which is one of most common reasons that wells in mature oil fields experience high water cut after long-term waterflooding. Identification and evaluation of the higher permeable channels (thief zones) are the key to effectively plug these thief zones and improve the conformance of water flood. This study applies three different methods to identify and evaluate the thief zones of a water injection project in North Buzazi Oilfield, a thick-bedded unconsolidated sandstone heavy oil reservoir in Manghestau, Kazakhstan. The thief zones, which evolve as a result of formation erosion and sand production, are identified and classified with respect to four different levels of significance using fuzzy comprehensive evaluation, production/injection profile method and pressure index (PI) methods. Good consistency is observed among the identification results using these methods. Finally, we present two ways to quantitatively evaluate the characteristics of the thief zones using water–oil-ratio as the input, which can be readily applied for future field development design.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Daiyin Yin ◽  
Wei Zhou

When fractured low-permeability reservoirs enter a high water cut period, injected water always flows along fractures, water cut speeds increase rapidly, and oil production decreases quickly in oil wells. It is difficult to further improve the oil recovery of such fractured low-permeability reservoirs. In this paper, based on the advantages of in-depth profile control and cyclic water injection, the feasibility of combining deep profile control with cyclic water injection to improve oil recovery in fractured low-permeability reservoirs during the high water cut stage was studied, and the mechanisms of in-depth profile control and cyclic waterflooding were investigated. According to the characteristics of reservoirs in Zone X, as well as the fracture features and evolution mechanisms of the well network, an outcrop plate fractured core model that considers fracture direction was developed, and core displacement experiments were carried out by using the HPAM/Cr3+ gel in-depth profile control system. The enhanced oil recovery of waterflooding, cyclic water injection, and in-depth profile control, as well as a combination of in-depth profile control and cyclic water injection, was investigated. Moreover, variations in the water cut degree, reserve recovery percentage, injection pressure, fracture and matrix pressure, and water saturation were monitored. On this basis, the mechanism of enhanced oil recovery based on the combined utilization of in-depth profile control and cyclic waterflooding methods was analyzed. The results show that in-depth profile control and cyclic water injection can be synchronized to further increase oil recovery. The recovery ratio under the combination of in-depth profile control and cyclic water injection was 1.9% higher than that under the in-depth profile control and 5.6% higher than that under cyclic water injection. The combination of in-depth profile control and cyclic water injection can increase the reservoir pressure; therefore, the fluctuation of pressure between the matrix and its fractures increases, more crude oil flows into the fracture, and the oil production increases.


Sign in / Sign up

Export Citation Format

Share Document