High-Speed Machining for CNC Milling Simulation Using CAM Software

Author(s):  
Kwok Cheat Gan ◽  
Mohd Salman Abu Mansor
2000 ◽  
Vol 10 (PR9) ◽  
pp. Pr9-541-Pr9-546 ◽  
Author(s):  
A. Molinari ◽  
M. Nouari

Alloy Digest ◽  
1982 ◽  
Vol 31 (11) ◽  

Abstract ANACONDA Alloy 360 is a leaded brass and is the alloy most often used for high-speed machining operations; it fills most of the needs for such purposes. Alloy 360 is the standard free-cutting brass and its machinability has become the standard by which all other copper-base alloys are rated. It has medium strength and ductility. Alloy 360 is used for hardware such as gears and pinions where excellent machinability is of prime importance and for all types of automatic high-speed screw-machine products. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Cu-447. Producer or source: Anaconda American Brass Company.


2020 ◽  
Vol 15 ◽  
Author(s):  
Fei Sun ◽  
Guohe Li ◽  
Qi Zhang ◽  
Meng Liu

: Cr12MoV hardened steel is widely used in the manufacturing of stamping die because of its high strength, high hardness, and good wear resistance. As a kind of mainstream cutting technology, high-speed machining has been applied in the machining of Cr12MoV hardened steel. Based on the review of a large number of literature, the development of high-speed machining of Cr12MoV hardened steel was summarized, including the research status of the saw-tooth chip, cutting force, cutting temperature, tool wear, machined surface quality, and parameters optimization. The problems that exist in the current research were discussed and the directions of future research were pointed out. It can promote the development of high-speed machining of Cr12MoV hardened steel.


2011 ◽  
Vol 474-476 ◽  
pp. 961-966 ◽  
Author(s):  
Li Qiang Zhang ◽  
Min Yue

Collision detection is a critical problem in five-axis high speed machining. Using a combination of process simulation and collision detection based on image analysis, a rapid detection approach is developed. The geometric model provides the cut geometry for the collision detection and records a dynamic geometric information for in-process workpiece. For the precise collision detection, a strategy of image analysis method is developed in order to make the approach efficient and maintian a high detection precision. An example of five-axis machining propeller is studied to demonstrate the proposed approach. It has shown that the collision detection task can be achieved with a near real-time performance.


Sign in / Sign up

Export Citation Format

Share Document