Multi-Trait Improvement in Sorghum to Optimize Livelihoods from Mixed Crop Livestock Systems and the Impact of Augmented New Cultivar Release Criteria

Author(s):  
M. Blümmel ◽  
K. V. S. V. Prasad ◽  
D. Ravi ◽  
Ch. Ramakrishna ◽  
V. Padmakumar ◽  
...  
Agronomy ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 672
Author(s):  
Sandoval Carpinelli ◽  
Adriel Ferreira da Fonseca ◽  
Pedro Henrique Weirich Neto ◽  
Santos Henrique Brant Dias ◽  
Laíse da Silveira Pontes

Residue decomposition from cattle dung is crucial in the nutrient cycling process in Integrated Crop–Livestock Systems (ICLS). It also involves the impact of the presence of trees exerted on excreta distribution, as well as nutrient cycling. The objectives of this research included (i) mapping the distribution of cattle dung in two ICLS, i.e., with and without trees, CLT and CL, respectively, and (ii) quantification of dry matter decomposition and nutrient release (nitrogen—N, phosphorus—P, potassium—K, and sulphur—S) from cattle dung in both systems. The cattle dung excluded boxes were set out from July 2018 to October 2018 (pasture phase), and retrieved after 1, 7, 14, 21, 28, 56 and 84 days (during the grazing period). The initial concentrations of N (~19 g kg−1), P (~9 g kg−1), K (~16 g kg−1), and S (~8 g kg−1) in the cattle dung showed no differences. The total N, P, K and S released from the cattle dung residues were less in the CLT system (2.2 kg ha−1 of N; 0.7 kg ha−1 of P; 2.2 kg ha−1 of K and 0.6 kg ha−1 of S), compared to the CL (4.2 kg ha−1 of N; 1.4 kg ha−1 of P; 3.6 kg ha−1 of K and 1.1 kg ha−1 of S). Lesser quantities of cattle dung were observed in the CLT (1810) compared to the CL (2652), caused by the lower stocking rate, on average, in this system (721 in the CL vs. 393 kg ha−1 in the CLT) because of the reduced amount of pasture in the CLT systems (−41%), probably due to light reduction (−42%). The density of the excreta was determined using the Thiessen polygon area. The CL system revealed a higher concentration of faeces at locations near the water points, gate and fences. The CLT affects the spatial distribution of the dung, causing uniformity. Therefore, these results strengthen the need to understand the nutrient release patterns from cattle dung to progress fertilisation management.


2009 ◽  
Vol 44 (8) ◽  
pp. 1011-1020 ◽  
Author(s):  
Robélio Leandro Marchão ◽  
Patrick Lavelle ◽  
Leonide Celini ◽  
Luiz Carlos Balbino ◽  
Lourival Vilela ◽  
...  

The objective of this work was to assess the effects of integrated crop-livestock systems, associated with two tillage and two fertilization regimes, on the abundance and diversity of the soil macrofauna. Four different management systems were studied: continuous pasture (mixed grass); continuous crop; two crop-livestock rotations (crop/pasture and pasture/crop); and native Cerrado as a control. Macrofauna was sampled using a modified Tropical Soil Biology and Fertility method, and all individuals were counted and identified at the morphospecies level for each plot. A total of 194 morphospecies were found, distributed among 30 groups, and the most representative in decreasing order of density were: Isoptera, Coleoptera larvae, Formicidae, Oligochaeta, Coleoptera adult, Diplopoda, Hemiptera, Diptera larvae, Arachnida, Chilopoda, Lepidoptera, Gasteropoda, Blattodea and Orthoptera. Soil management systems and tillage regimes affected the structure of soil macrofauna, and integrated crop-livestock systems, associated with no-tillage, especially with grass/legume species associations, had more favorable conditions for the development of "soil engineers" compared with continuous pasture or arable crops. Soil macrofauna density and diversity, assessed at morphospecies level, are effective data to measure the impact of land use in Cerrado soils.


2012 ◽  
Vol 21 (4) ◽  
pp. 225-234 ◽  
Author(s):  
Patrice Autfray ◽  
Fagaye Sissoko ◽  
Gatien Falconnier ◽  
Alassane Ba ◽  
Patrick Dugué

Author(s):  
Stephen G. Mackenzie ◽  
◽  
Ilias Kyriazakis ◽  

The focus of this chapter is on the environmental impact consequences of endemic livestock health challenges that lead to deterioration in animal health, and on the potential impacts arising from their mitigations. The first part of the chapter concentrates on the potential of animal health to affect the environmental impact of livestock systems. Subsequently, it reviews the literature to date which has quantified the impact of health challenges for the environmental impacts of livestock systems. The potential of successful health interventions to mitigate negative environmental impacts represents a point of synergy between concerns around environmental sustainability and animal welfare, both of which represent 'hot topics' in the discourse surrounding the livestock industry and its sustainability. The challenges associated with modelling health interventions and their potential to mitigate environmental impacts constitute the last section in the chapter.


2017 ◽  
Vol 08 ◽  
Author(s):  
Anandan Samireddypalle ◽  
Ousmane Boukar ◽  
Elaine Grings ◽  
Christian A. Fatokun ◽  
Prasad Kodukula ◽  
...  

2017 ◽  
Vol 17 (6) ◽  
pp. 1713-1724 ◽  
Author(s):  
Abubeker Hassen ◽  
Deribe Gemiyo Talore ◽  
Eyob Habte Tesfamariam ◽  
Michael Andrew Friend ◽  
Thamsanqa Doctor Empire Mpanza

Sign in / Sign up

Export Citation Format

Share Document