Quantifying the contribution of livestock health issues to the environmental impact of their production systems

Author(s):  
Stephen G. Mackenzie ◽  
◽  
Ilias Kyriazakis ◽  

The focus of this chapter is on the environmental impact consequences of endemic livestock health challenges that lead to deterioration in animal health, and on the potential impacts arising from their mitigations. The first part of the chapter concentrates on the potential of animal health to affect the environmental impact of livestock systems. Subsequently, it reviews the literature to date which has quantified the impact of health challenges for the environmental impacts of livestock systems. The potential of successful health interventions to mitigate negative environmental impacts represents a point of synergy between concerns around environmental sustainability and animal welfare, both of which represent 'hot topics' in the discourse surrounding the livestock industry and its sustainability. The challenges associated with modelling health interventions and their potential to mitigate environmental impacts constitute the last section in the chapter.

Toxins ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 158
Author(s):  
Colin Eady

For 30 years, forage ryegrass breeding has known that the germplasm may contain a maternally inherited symbiotic Epichloë endophyte. These endophytes produce a suite of secondary alkaloid compounds, dependent upon strain. Many produce ergot and other alkaloids, which are associated with both insect deterrence and livestock health issues. The levels of alkaloids and other endophyte characteristics are influenced by strain, host germplasm, and environmental conditions. Some strains in the right host germplasm can confer an advantage over biotic and abiotic stressors, thus acting as a maternally inherited desirable ‘trait’. Through seed production, these mutualistic endophytes do not transmit into 100% of the crop seed and are less vigorous than the grass seed itself. This causes stability and longevity issues for seed production and storage should the ‘trait’ be desired in the germplasm. This makes understanding the precise nature of the relationship vitally important to the plant breeder. These Epichloë endophytes cannot be ‘bred’ in the conventional sense, as they are asexual. Instead, the breeder may modulate endophyte characteristics through selection of host germplasm, a sort of breeding by proxy. This article explores, from a forage seed company perspective, the issues that endophyte characteristics and breeding them by proxy have on ryegrass breeding, and outlines the methods used to assess the ‘trait’, and the application of these through the breeding, production, and deployment processes. Finally, this article investigates opportunities for enhancing the utilisation of alkaloid-producing endophytes within pastures, with a focus on balancing alkaloid levels to further enhance pest deterrence and improving livestock outcomes.


2016 ◽  
Vol 7 (2) ◽  
pp. 208-214
Author(s):  
P. Chemineau

The future livestock systems at the world level will have to produce more in the perspective of the population increase in the next 30 years, whereas reducing their environmental footprint and addressing societal concerns. In that perspective, we may wonder if animal health and animal welfare, which are two essential components of production systems, may play an important role in the stability of the three pillars of sustainability of the livestock systems. We already know that objectives driven by economy, environment and society may modify animal welfare and animal health, but is the reverse true? The answer is yes and in 11 cases out of 12 of the matrix health-welfare×3 pillars of sustainability×positive or negative change, we have many examples indicating that animal health and animal welfare are able to modify, positively or negatively, the three pillars of sustainability. Moreover, we also have good examples of strong interactions between health and welfare. These elements play in favour of an holistic approach at the farm level and of a multicriterial definition of what could be the sustainable systems of animal production in the future which will respect animal welfare and maintain a good animal health.


2021 ◽  
Vol 12 (5) ◽  
pp. 6504-6515

With the development of additive manufacturing technology, 3D bone tissue engineering scaffolds have evolved. Bone tissue engineering is one of the techniques for repairing bone abnormalities caused by a variety of circumstances, such as injuries or the need to support damaged sections. Many bits of research have gone towards developing 3D bone tissue engineering scaffolds all across the world. The assessment of the environmental impact, on the other hand, has received less attention. As a result, the focus of this study is on developing a life cycle assessment (LCA) model for 3D bone tissue engineering scaffolds and evaluating potential environmental impacts. One of the methodologies to evaluating a complete environmental impact assessment is life cycle assessment (LCA). The cradle-to-grave method will be used in this study, and GaBi software was used to create the analysis for this study. Previous research on 3D bone tissue engineering fabrication employing poly(ethylene glycol) diacrylate (PEGDA) soaked in dimethyl sulfoxide (DMSO), and diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide (TPO) as a photoinitiator will be reviewed. Meanwhile, digital light processing (DLP) 3D printing is employed as the production technique. The GaBi program and the LCA model developed to highlight the potential environmental impact. This study shows how the input and output of LCA of 3D bone tissue engineering scaffolds might contribute to environmental issues such as air, freshwater, saltwater, and industrial soil emissions. The emission contributing to potential environmental impacts comes from life cycle input, electricity and transportation consumption, manufacturing process, and material resources. The results from this research can be used as an indicator for the researcher to take the impact of the development of 3D bone tissue engineering on the environment seriously.


2018 ◽  
Vol 10 (8) ◽  
pp. 2917 ◽  
Author(s):  
José Lozano-Miralles ◽  
Manuel Hermoso-Orzáez ◽  
Carmen Martínez-García ◽  
José Rojas-Sola

The construction industry is responsible for 40–45% of primary energy consumption in Europe. Therefore, it is essential to find new materials with a lower environmental impact to achieve sustainable buildings. The objective of this study was to carry out the life cycle analysis (LCA) to evaluate the environmental impacts of baked clay bricks incorporating organic waste. The scope of this comparative study of LCA covers cradle to gate and involves the extraction of clay and organic waste from the brick, transport, crushing, modelling, drying and cooking. Local sustainability within a circular economy strategy is used as a laboratory test. The energy used during the cooking process of the bricks modified with organic waste, the gas emission concentrate and the emission factors are quantified experimentally in the laboratory. Potential environmental impacts are analysed and compared using the ReCiPe midpoint LCA method using SimaPro 8.0.5.13. These results achieved from this method are compared with those obtained with a second method—Impact 2002+ v2.12. The results of LCA show that the incorporation of organic waste in bricks is favourable from an environmental point of view and is a promising alternative approach in terms of environmental impacts, as it leads to a decrease of 15–20% in all the impact categories studied. Therefore, the suitability of the use of organic additives in clay bricks was confirmed, as this addition was shown to improve their efficiency and sustainability, thus reducing the environmental impact.


2010 ◽  
Vol 365 (1554) ◽  
pp. 2853-2867 ◽  
Author(s):  
Philip K. Thornton

The livestock sector globally is highly dynamic. In developing countries, it is evolving in response to rapidly increasing demand for livestock products. In developed countries, demand for livestock products is stagnating, while many production systems are increasing their efficiency and environmental sustainability. Historical changes in the demand for livestock products have been largely driven by human population growth, income growth and urbanization and the production response in different livestock systems has been associated with science and technology as well as increases in animal numbers. In the future, production will increasingly be affected by competition for natural resources, particularly land and water, competition between food and feed and by the need to operate in a carbon-constrained economy. Developments in breeding, nutrition and animal health will continue to contribute to increasing potential production and further efficiency and genetic gains. Livestock production is likely to be increasingly affected by carbon constraints and environmental and animal welfare legislation. Demand for livestock products in the future could be heavily moderated by socio-economic factors such as human health concerns and changing socio-cultural values. There is considerable uncertainty as to how these factors will play out in different regions of the world in the coming decades.


Energies ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 2166 ◽  
Author(s):  
Sara Rajabi Hamedani ◽  
Tom Kuppens ◽  
Robert Malina ◽  
Enrico Bocci ◽  
Andrea Colantoni ◽  
...  

It is unclear whether the production of biochar is economically feasible. As a consequence, firms do not often invest in biochar production plants. However, biochar production and application might be desirable from a societal perspective as it might entail net environmental benefits. Hence, the aim of this work has been to assess and monetize the environmental impacts of biochar production systems so that the environmental aspects can be integrated with the economic and social ones later on to quantify the total return for society. Therefore, a life cycle analysis (LCA) has been performed for two potential biochar production systems in Belgium based on two different feedstocks: (i) willow and (ii) pig manure. First, the environmental impacts of the two biochar production systems are assessed from a life cycle perspective, assuming one ton of biochar as the functional unit. Therefore, LCA using SimaPro software has been performed both on the midpoint and endpoint level. Biochar production from willow achieves better results compared to biochar from pig manure for all environmental impact categories considered. In a second step, monetary valuation has been applied to the LCA results in order to weigh environmental benefits against environmental costs using the Ecotax, Ecovalue, and Stepwise approach. Consequently, sensitivity analysis investigates the impact of variation in NPK savings and byproducts of the biochar production process on monetized life cycle assessment results. As a result, it is suggested that biochar production from willow is preferred to biochar production from pig manure from an environmental point of view. In future research, those monetized environmental impacts will be integrated within existing techno-economic models that calculate the financial viability from an investor’s point of view, so that the total return for society can be quantified and the preferred biochar production system from a societal point of view can be identified.


2019 ◽  
Vol 11 (20) ◽  
pp. 5749 ◽  
Author(s):  
Biraj Adhikari ◽  
Trakarn Prapaspongsa

This study assesses the environmental sustainability of food consumption in Thailand, India, China, Japan, and Saudi Arabia by using a life cycle assessment. These five Asian countries were selected according to the differences in surface area, population density, GDP, and food consumption patterns. The data were obtained from Food and Agriculture Organization food balance sheets, Ecoinvent 3.4 and Agri-footprint 4.0 databases, and scientific publications. The environmental impact categories chosen were global warming, terrestrial acidification, eutrophication, eco-toxicity, human toxicity, and fossil resource scarcity. The impact assessment was carried out by using the ReCiPe2006 v1.1 method. Based on the analysis, the highest environmental impacts for all categories (except eutrophication) were from the food consumption in China, followed by the consumption in Japan, Saudi Arabia, Thailand, and India. The major contributors to these impacts were meat, cereals, animal products, and alcoholic beverages. Meat was the highest contributor in all countries except India, because of low meat consumption in India. A calorie intake analysis was also conducted, which showed reductions in environmental impacts by shifting towards calorie-adequate and non-environmentally intensive diets in Thailand, China, Japan, and Saudi Arabia. Therefore, a reduction in the consumption of meat, cereals, animal products, and alcoholic beverages could therefore enhance the environmental sustainability of food consumption.


Author(s):  
Mostafa Sabbaghi ◽  
Sara Behdad

Consumers might be willing to repair their broken devices as long as the associated repair costs do not exceed an undesirable threshold. However, in many cases the technological obsolescence actuates consumers to retire old devices and replace them with new ones rather than extending the product lifecycle through repair. In this paper, we aim to investigate the impact of components’ deterioration profiles and consumers’ repair decisions on the lifespan of devices, and then assesse the anticipated life cycle environmental impacts. A Monte Carlo simulation is developed to estimate the life cycle characteristics such as the average lifespan, the number of failed components’ replacement, and the total repair cost per cycle for a laptop computer. The lifecycle characteristics estimated from simulation model further have been used in a Life Cycle Assessment (LCA) study to quantify the environmental impact associated with different design scenarios. The results reveal the impact of product design as well as consumers’ repair decisions on the product lifespan and the corresponding environmental impacts.


2021 ◽  
Vol 13 (17) ◽  
pp. 9706
Author(s):  
Nikolaos Voutzourakis ◽  
Alexandros Stefanakis ◽  
Sokratis Stergiadis ◽  
Leonidas Rempelos ◽  
Nikolaos Tzanidakis ◽  
...  

Due to increasing demand, many traditional, grazing-based Mediterranean sheep production systems have introduced intensified feeding regimes, increased investments in infrastructure and drug use to increase milk yields. However, compared to bovine milk production systems, there is limited knowledge about the impact of these intensification practices on animal welfare and health and on the quality of dairy products. The aim of this study was therefore to quantify the effects of management practices and environmental conditions background on udder health, parasitism and milk quantity and quality in Cretan traditional production systems. Milk yields were higher in semi-intensive production systems while concentrations of several nutritionally desirable compounds such as omega-3 fatty acids were found to be higher in milk from extensive systems. Antibiotic and anthelmintic use was relatively low in both extensive and semi-intensive production systems. There was no substantial difference in parasitic burden, somatic cell counts, and microbiological parameters assessed in milk. Recording of flock health parameters showed that animal health and welfare was high in both extensive and semi-intensively managed flocks, and that overall, the health status of extensively managed ewes was slightly better. In contrast, environmental conditions (temperature and rainfall) had a substantial effect on parasitism and milk quality.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4998
Author(s):  
Vasileios Ntouros ◽  
Ioannis Kousis ◽  
Dimitra Papadaki ◽  
Anna Laura Pisello ◽  
Margarita Niki Assimakopoulos

In the last twenty years, research activity around the environmental applications of metal–organic frameworks has bloomed due to their CO2 capture ability, tunable properties, porosity, and well-defined crystalline structure. Thus, hundreds of MOFs have been developed. However, the impact of their production on the environment has not been investigated as thoroughly as their potential applications. In this work, the environmental performance of various synthetic routes of MOF nanoparticles, in particular ZIF-8, is assessed through a life cycle assessment. For this purpose, five representative synthesis routes were considered, and synthesis data were obtained based on available literature. The synthesis included different solvents (de-ionized water, methanol, dimethylformamide) as well as different synthetic steps (i.e., hours of drying, stirring, precursor). The findings revealed that the main environmental weak points identified during production were: (a) the use of dimethylformamide (DMF) and methanol (MeOH) as substances impacting environmental sustainability, which accounted for more than 85% of the overall environmental impacts in those synthetic routes where they were utilized as solvents and as cleaning agents at the same time; (b) the electricity consumption, especially due to the Greek energy mix which is fossil-fuel dependent, and accounted for up to 13% of the overall environmental impacts in some synthetic routes. Nonetheless, for the optimization of the impacts provided by the energy use, suggestions are made based on the use of alternative, cleaner renewable energy sources, which (for the case of wind energy) will decrease the impacts by up to 2%.


Sign in / Sign up

Export Citation Format

Share Document