Investigation of Geopolymer Concrete with Ceramic Waste as a Partial Replacement of Coarse Aggregate

Author(s):  
V. Vignesh Prabu ◽  
S. Velmurugan ◽  
O. P. Deepak
2019 ◽  
Vol 8 (4) ◽  
pp. 12142-12146

Geopolymer concrete is one of the major developments in recent years resulting in utilization of fly ash in huge quantities and eventually reducing cement consumption and ultimately reducing emission of greenhouse gases.The geopolymer concrete is produced by using activated fly ash as binder material instead of cement. Geopolymer concrete accomplishes great strength and looks similar to conventional concrete. Recycled coarse aggregate (RCA )which is coming from demolition of construction of old and existing structures has been used in this study. The durability property; acid attack resistance with partial replacement of coarse aggregate by recycled aggregate in geopolymer and conventional concrete for the different composition such as 10, 20, 30 and 40percentage for a period of 15, 45,75 and 105 days has been evaluated. From the results it was observed that in both natural and recycled aggregate of Geopolymer concrete is highly resistant to acids such as sulphuric acid and hydrochloric acid compared to conventional concrete of respective aggregates.


2017 ◽  
Vol 36 (3) ◽  
pp. 691-696
Author(s):  
EE Ikponmwosa ◽  
SO Ehikhuenmen

This paper reports the findings on an experimental investigation of the effect of partial replacement of coarse aggregate with ceramic waste on strength properties of concrete. Compressive strength tests were conducted using 150x150x150mm cube specimens, while tensile strength was investigated using 150x300mm cylinder specimens. Results of tests show that workability, density, compressive and flexural strength of concrete decreased with increase in ceramic waste content. The compressive strength at 90 days curing age for the control sample was 24.67 N/mm2. Compressive strength values at 90 days curing age for  25%, 50% and 75% replacement levels were 21.78 N/mm2, 19.85 N/mm2and 17.85 N/mm2 respectively. The decrease in density and strength was due to ceramic waste being lighter and more porous than normal coarse aggregate. Tensile strength of concrete with ceramic waste decline gradually from 8.39 N/mm2 to 6.13 N/mm2 for the control and 75% replacement samples respectively. This could be attributed to the water absorption capacity and external porcelain nature of the waste material. A production cost savings of 10.7% for 1:2:4 concrete mix was noted at 75% replacement level. This study concludes that ceramic waste could be used for both structural and non-structural works and recommends that beyond 75% replacement level, ceramic waste material should not be used in concrete structures where strength is the major consideration. http://dx.doi.org/10.4314/njt.v36i3.5


2020 ◽  
Vol 38 (11A) ◽  
pp. 1706-1716
Author(s):  
Wasan I. Khalil ◽  
Qias J. Frayyeh ◽  
Mahmood F. Ahmed

The purpose of this work is to investigate the possibility to recycled and reused of waste clay brick and waste plastic as constituents in the production of green Geopolymer concrete paving bricks. Powder of clay brick waste (WBP) was used as a partial replacement of Metakaolin (MK) in Geopolymer binder. Moreover, recycled clay brick waste aggregate (BA) and plastic waste aggregate (PL) were incorporated as coarse aggregate in mixtures of Metakaolin based Geopolymer concrete (MK-GPC) pavement bricks. Six types of mixtures were prepared and cast as pavement bricks with dimensions of 150×150×100 mm. All samples have been tested for compressive strength, water absorption and abrasion resistance at age of 28 days; and compared the results with the requirements of Iraqi specification No.1606-2006. The MK-GPC pavement bricks present a compressive strength of 31-47MPa, water absorption of 3.66% to5.32% and abrasion resistance with groove length between 21.78mm to 18.91 mm. These types of pavement bricks are classified as a medium to light capacity for weight loading, and it is possible to be used in wide range of paving applications, especially in aggressive wearing environment.


Construction is the one the fast growing field in the worldwide. There are many environmental issues connected with the manufacture of OPC, at the same time availability of natural coarse aggregate is getting reduced. Geopolymer binder and recycled aggregates are promising alternatives for OPC and natural coarse aggregates. It is produced by the chemical action of inorganic molecules and made up of Fly Ash, GGBS, fine aggregate, coarse aggregate and an alkaline solution of sodium hydroxide and sodium silicate. 10 M sodium hydroxide and sodium silicate alkali activators are used to synthesis the geopolymer in this study. Recycled aggregates are obtained from the construction demolished waste. The main focus of this work is to find out the mechanical properties of geopolymer concrete of grade G40 when natural coarse aggregate(NCA) is replaced by recycled coarse aggregate in various proportions such as 0%, 10%, 20%, 30%,40% and 50% and also to compare the results of geopolymer concrete made with recycled coarse aggregates(RAGPC) with geopolymer concrete of natural coarse aggregate(GPC) and controlled concrete manufactured with recycled aggregates(RAC) and controlled concrete of natural coarse aggregates(CC) of respective grade. It has been observed that the mechanical properties are enhanced in geopolymer concrete, both in natural coarse aggregate and recycled coarse aggregate up to 30% replacement when it is compared with the same grade of controlled concrete.


Author(s):  
Asfaw Mekonnen LAKEW ◽  
Mukhallad M. AL-MASHHADANI ◽  
Orhan CANPOLAT

This experimental work evaluated geopolymer concrete containing fly ash and slag by partial replacement of natural coarse aggregate (NCA) with recycled coarse aggregate (RCA) to manufacture environmental-friendly concrete. The proportion of recycled aggregates considered consists of 10%, 20%, 30%, and 40% of the total coarse aggregate amount. Also, a steel fiber ratio of 0.3% was utilized. The mechanical properties and abrasion resistance of fly ash/slag-based geopolymer concrete were then assessed. Majorly, the mechanical strength of the concrete samples decreased by the increase of RCA content. The geopolymer concrete with 40% RCA gave 28.3% lesser compressive strength and 24% lower splitting tensile strength than NCA concrete at one year. Also, the flexural strength of concrete specimens was reduced by 35% (from 5.34MPa to 3.5MPa) with the incorporation of 40% RCA. The incorporation of 30% RCA caused 23% and 22.6% reduction in compressive strength at 56 days and one year, respectively. The flexural and splitting tensile strength of the specimens was not significantly reduced (less than 10%) with the inclusion of a recycled coarse aggregate ratio of up to 30%. Furthermore, the abrasion wear thickness of every concrete sample was less than 1mm. RCA inclusion of 20% produced either insignificant reduction or better strength results compared to reference mixtures. As a result, it was considered that the combination of 0.3% steel fiber and 20% recycled coarse aggregate in fly ash/slag-based geopolymer concrete leads to an eco-friendly concrete mix with acceptable short and long-term engineering properties that would lead to sustainability in concrete production and utilization sector.


Author(s):  
Sweda Sara Philip ◽  
C.P. Archana

Paver blocks are used in many areas like street road and other construction places. Due to rapid infrastructure development the use of cement is increasing. Cement emits large amount of carbon dioxide (CO2) and this leads to global warming. Today researches on waste management lead to an eco-friendly product called geopolymer mortar and concrete. To support the development of pavement construction in the civil engineering industry, a new approach to predicting the performance of the geopolymer paver block (GPB) has been proposed. A huge quantity of ceramic waste is generated during processing, transportation and handling. To reduce this waste disposal, ceramic waste can be used as an alternative material to natural coarse aggregate. Fly ash and Ground Granulated Blast-furnace Slag (GGBS) are activated using alkaline solution such as sodium silicate and sodium hydroxide to get cementitious binder. There are various paper and research works based on natural coarse aggregate replaced by various percentages of other industrial waste material and cement replaced by various percentage of other waste material and it is found that there is increase in strength, durability and reduction in cost and utilization of waste material. Various waste material can be used for improving strength of paver block. The primary objective of this review is to understand the properties as well as economical and environmental benefits of GPB using ceramic tile waste corresponding to M40 grade (16M) based on earlier researches. From the mix designed, 25% Fly ash and 75% GGBS shows optimum mix. The review work also focus on selection of various percentages of ceramic tile waste for replacing natural coarse aggregate. Key Words:  Geopolymer Paver Block, Fly Ash, GGBS, Cementitious binder, Alkaline solution, Ceramic tile waste


Concrete is themost generally used construction material inthe world due to, wonderful durability, straight forward accessibility of its constituent materials, its low price, straightforward formability to any shape, etc. There are many ecological problems connected with the manufacture of OPC, at a similar time accessibility of natural coarse aggregate is additionally changing into scarcity and on the other side, the disposal of C&D wastes is additionally changing into a significant environmental issue . Hence, it is unavoidable to find an alternative material to the existing most resource consuming Portland cement and natural aggregates. GPC is a construction material of innovation concrete which shall be produced by the chemical action of inorganic molecules and made up of fly ash, GGBS, FA, CA, and an alkaline solution of NaOH and Na2SiO3 , plays a significant role in its environmental control of greenhouse effects. The main objective of this paper is to study the permeation properties such permeability, sorptivity etc.,of geopolymer concrete of grade G40 when natural coarse aggregate is replaced with recycled aggregate in different proportions such as 10%, 20%, 30%, and 40% and also to compare the results of geopolymer concrete made with recycled coarse aggregates with geopolymer concrete of natural coarse aggregate and controlled concrete of respective grade. It has been observed that the permeability and sorptivity properties are better in geopolymer concrete, both in natural coarse aggregate and recycled coarse aggregate up to 30% replacement when it is compared with the same grade of controlled concreterespectively.


Sign in / Sign up

Export Citation Format

Share Document