Microbial Communities Based Biofilmed Biofertilizers Enhance Soil Fertility and Plant Growth in Hevea Ecosystem: Evidences from Seedlings and Immature Plants

Author(s):  
Rasika Priyani Hettiarachchi ◽  
Gamini Seneviratne ◽  
Ananda Nawarathna Jayakody ◽  
Kiththangodage Eranga De Silva ◽  
P. D. Thushara Gunathilake ◽  
...  
Agronomy ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1794
Author(s):  
Sarbjeet Niraula ◽  
Yong-Keun Choi ◽  
Kristen Payne ◽  
James P. Muir ◽  
Eunsung Kan ◽  
...  

Recently, biochar has been proposed for various agronomic applications including improved plant growth and soil fertility. In this study, the effects of dairy effluent-saturated (SBC) and unsaturated wood-derived biochar (UBC) on Bermudagrass (Cynodon spp.) growth, soil fertility and microbial communities were investigated in a greenhouse pot study. SBC and UBC were mixed with sandy loam soil at various loading rates (0, 1, 2, 4, and 8%) to grow Bermudagrass for 10 weeks. Soil physicochemical properties and plant growth measurements were taken, followed by 16S rRNA (V3-V4) amplicon sequencing of soil bacterial communities. Amendment of SBC to soil altered the soil physicochemical properties and increased the concentrations of N and P in the soil at 2 to 8% loading rates compared to UBC treated soil. The addition of SBC to soil also increased the overall plant biomass compared to UBC with more effects on aboveground biomass. Differential abundance analysis of taxa showed enrichment of Proteobacteria in UBC-amended soil, whereas Firmicutes and Nitrospirae were abundant in SBC-amended soil. Interestingly, enrichment of photosynthetic and N-fixing bacteria was observed in both SBC and UBC-amended soils after 10 weeks of treatments. However, oxidative phosphorylation and biotin metabolisms were found to be more abundant in SBC-amended soil compared to UBC-amended soil. Overall, our study suggested that amendment of SBC to soil resulted in enhanced soil nutrients, microbial capacity and Bermudagrass growth than that of UBC. Therefore, application of SBC to soil in field trials would be merited to identify sustainable and effective practices for enhancing plant growth, soil fertility and soil bacterial community.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yuhua Shan ◽  
Min Lv ◽  
Wengang Zuo ◽  
Zehui Tang ◽  
Cheng Ding ◽  
...  

AbstractThe most important measures for salt-affected mudflat soil reclamation are to reduce salinity and to increase soil organic carbon (OC) content and thus soil fertility. Salinity reduction is often accomplished through costly freshwater irrigation by special engineering measures. Whether fertility enhancement only through one-off application of a great amount of OC can improve soil properties and promote plant growth in salt-affected mudflat soil remains unclear. Therefore, the objective of our indoor pot experiment was to study the effects of OC amendment at 0, 0.5%, 1.0%, 1.5%, and 2.5%, calculated from carbon content, by one-off application of sewage sludge on soil properties, rice yield, and root growth in salt-affected mudflat soil under waterlogged conditions. The results showed that the application of sewage sludge promoted soil fertility by reducing soil pH and increasing content of OC, nitrogen and phosphorus in salt-affected mudflat soil, while soil electric conductivity (EC) increased with increasing sewage sludge (SS) application rates under waterlogged conditions. In this study, the rice growth was not inhibited by the highest EC of 4.43 dS m−1 even at high doses of SS application. The SS application increased yield of rice, promoted root growth, enhanced root activity and root flux activity, and increased the soluble sugar and amino acid content in the bleeding sap of rice plants at the tillering, jointing, and maturity stages. In conclusion, fertility enhancement through organic carbon amendment can “offset” the adverse effects of increased salinity and promote plant growth in salt-affected mudflat soil under waterlogged conditions.


Rhizosphere ◽  
2019 ◽  
Vol 9 ◽  
pp. 38-46 ◽  
Author(s):  
Dante A. López-Carmona ◽  
Alejandro Alarcón ◽  
Esperanza Martínez-Romero ◽  
Juan José Peña-Cabriales ◽  
John Larsen

2019 ◽  
Author(s):  
Rodrigo Alegria Terrazas ◽  
Senga Robertson-Albertyn ◽  
Aileen Mary Corral ◽  
Carmen Escudero-Martinez ◽  
Katharin Balbirnie-Cumming ◽  
...  

AbstractBackgroundSince the dawn of agriculture, human selection on plants has progressively differentiated input-demanding productive crops from their wild progenitors thriving in marginal areas. Barley (Hordeum vulgare), the fourth most cultivated cereal globally, is a prime example of this process. We previously demonstrated that wild and domesticated barley genotypes host distinct microbial communities in their rhizosphere. Here, we tested the hypothesis that microbiota diversification is modulated by, and responds to, nitrogen (N) application in soil and assessed the impact of microbiota taxonomic and functional compositions on plant growth.MethodsWe grew two wild (H. vulgare ssp. spontaneum) and an ‘Elite’ domesticated (H. vulgare ssp. vulgare) barley genotypes in an agricultural soil treated with and without N inputs. By using a two-pronged 16S rRNA gene amplicon sequencing and comparative metagenomics approach, we determined the impact of N application on taxonomic composition and metabolic potential of the microbial communities exposed to limiting and replete N supplies. We then implemented a plant-soil feedback experiment to assess microbiotas’ recruitment cues and contribution to plant growth.ResultsN availability emerged as a modulator of the recruitment cues of the barley bacterial microbiota as evidenced by the increased number of bacterial genera differentially recruited between unplanted soil and rhizosphere communities under N-limiting conditions. This recruitment pattern mirrored the impact of the host genotype on rhizosphere bacteria. The characterisation of the assembled metagenomes of plants exposed to N-limiting conditions revealed a metabolic specialisation of the rhizosphere microbiota compared to unplanted soil controls. This specialisation is underpinned predominantly by bacteria and is manifested by the enrichment of a core set of biological processes sustaining the adaptation of polymicrobial communities such as N utilisation, quorum sensing and motility across genotypes. The quantitative variation in a group of these biological processes defined host signatures in the barley rhizosphere metagenome. Finally, a plant-soil feedback experiment revealed that the host-mediated taxonomic diversification of the bacterial microbiota is associated with barley growth under sub-optimal N supplies.ConclusionsOur results suggest that under N limiting conditions, a substrate-driven selection process underpins the assembly of barley rhizosphere microbiota. Host-microbe and microbe-microbe interactions fine-tune this process at the taxonomic and functional level across kingdoms. The disruption of these recruitment cues negatively impacts plant growth.


Author(s):  
Gebeyaw Tilahun Yeshaneh

The study was conducted at the Abuhoy Gara Catchment, which is located in the Gidan District of North Wello Zone. The aim of the study was to study farmers’ perceptions about the effect of farm land management practices and soil depth on the distribution of major soil physico-chemical properties in eroded soils of Aboy Gara watershed. To address this issue, semi-structured interviews were conducted in 64 households to gain insight into soil fertility management practices, local methods were used to assess the fertility status of a field, and perceived trends in soil fertility. Thirty-three farmers were then asked to identify fertile and infertile fields. According to farmers response, farmers’ fields were characterized as fertile where it comprise black color, cracks during dry season, good crop performance, vigorous growth of certain plants and presence of plants in a dry environment whereas the infertile is where it shows yellow/white and red colors, compacted soils, stunted plant growth, presence of rocks and stones and wilting or dying of crops in a hot environment. A total of eight indicators (soil color, texture, soil depth, topography, soil drainage, and distance from home, type of weeds grown and cultivation intensity) were found to be used by farmers to evaluate and monitor soil fertility. The results of administered questions showed that the principal indicators mentioned by farmers as very important were soil colour (82.8%), continuous cropping land (72.2%), soil texture (62.8%), distance from home (61%), type of weeds grown (56%), soil depth (55.6%), topography (51.1%), and soil drainage (28.7%) as very important. So, among sixty four interviewed farmers: deep soil (60 farmers), soils near to home (60 farmers), forest soil (59 farmers), smooth fine soil (59 farmers), black color soil (58 farmers) and gentle slope soil (57farmers) are categorized as fertile whereas 59, 57, 56, 55, and 44farmers said that Sandy/coarse soil, shallow soil depth, steep slope soils and yellow/white, red soils and continuously cultivated soils are infertile, respectively. The overall result showed that there was good agreement between farmers’ assessment of the soil fertility status of a field and a number of these indicators. The soil laboratory analysis also corresponded well with farmers’ assessment of soil fertility. Therefore, to design more appropriate research and to facilitate clear communication with farmers, researchers need to recognize farmers’ knowledge, perceptions about assessments of soil fertility. Because, as they included all soil factors affecting plant growth, farmers’ perceptions of soil fertility were found to be more long term day-to-day close practical experience finding than those of researchers.


Sign in / Sign up

Export Citation Format

Share Document