Develop Interlocking Concrete Block Pavement from Portland Cement, Polystyrene and Bottom Ash on Pedestrian Road

Author(s):  
Mariah Awang ◽  
Mohamad Luqman Hakkim Idris ◽  
Azman Bin Ja’afar ◽  
Noraini Marsi ◽  
Muhammad Haikal Mohd Fodzi ◽  
...  
2021 ◽  
Vol 2145 (1) ◽  
pp. 012032
Author(s):  
B Kaewsai ◽  
P Torkittikul ◽  
A Chaipanich

Abstract This research work investigated the properties of concrete block made from Portland cement and aggregate replacement materials. Portland cement (PC) was replaced by fly ash (FA) at 10%, 20%, 30% and sand was replaced by bottom ash (BA) at 10% by weight. Water was used at 7% by weight of total solid mass. Binder : Sand : Stone dust ratio of 1 : 5 : 6, 1 : 4 : 5 and 1 : 3.5 : 4.5 were used. Compressive strength were tested after curing in air for 28 days. The results showed that compressive strength of 1 : 5 : 6 ratio was lower than others. Concrete block replaced PC by fly ash had lower compressive strength when amount of fly ash increased. Concrete block had lower compressive strength when replaced sand by bottom ash. As a result, the mixes with FA as PC replacement and BA as sand replacement at the ratio of 1 : 5 : 6 did not meet the requirement of Thai industrial standard. However, concrete block with PC replaced by fly ash at 10%, 20% and sand replaced by bottom ash at 10% of 1 : 3.5 : 4.5 ratio was higher than 1 : 5 : 6 ratio and this ratio meet the requirement of Thai industrial standard.


2017 ◽  
Vol 68 (10) ◽  
pp. 2367-2372 ◽  
Author(s):  
Ng Hooi Jun ◽  
Mirabela Georgiana Minciuna ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
Tan Soo Jin ◽  
Andrei Victor Sandu ◽  
...  

Manufacturing of Portland cement consists of high volume of natural aggregates which depleted rapidly in today construction field. New substitutable material such as bottom ash replace and target for comparable properties with hydraulic or pozzolanic properties as Portland cement. This study investigates the replacement of different sizes of bottom ash into Portland cement by reducing the content of Portland cement and examined the mechanism between bottom ash (BA) and Portland cement. A cement composite developed by 10% replacement with 1, 7, 14, and 28 days of curing and exhibited excellent mechanical strength on day 28 (34.23 MPa) with 63 mm BA. The porous structure of BA results in lower density as the fineness particles size contains high specific surface area and consume high quantity of water. The morphology, mineralogical, and ternary phase analysis showed that pozzolanic reaction of bottom ash does not alter but complements and integrates the cement hydration process which facilitate effectively the potential of bottom ash to act as construction material.


2020 ◽  
Vol 38 (8) ◽  
pp. 868-875
Author(s):  
Marc Antoun ◽  
Frédéric Becquart ◽  
Najib Gerges ◽  
Georges Aouad

Municipal solid waste incineration generates large quantities of bottom ash that should be recycled. Current use of municipal solid waste incineration bottom ash (MSWI-BA) in cementitious materials is mostly in Ordinary Portland Cement (OPC). This paper considers using MSWI-BA as sand substitution in Calcium Sulfoaluminate Cement (CSA) as an alternative to OPC. A comparison between OPC and CSA mortars containing 0–2 mm MSWI-BA is conducted. The MSWI-BA used was treated to remove the ferrous and non-ferrous metals in order to obtain a better mineral fraction. Different percentages (0%, 25%, 50%, 75%, and 100%) of standard sand were substituted by MSWI-BA based on equivalent volume. Experimental results showed that the compressive strength and porosity of the CSA mortars were superior to OPC after substitution at 1, 7, 28, and 90 days. The compressive strength of OPC mortars with 25% substitution decreased by 40% compared to 11% for CSA mortars at 90 days. This is due to the difference in pH between the two cement pastes as OPC in contact with the MSWI-BA leads to a reaction with the aluminum content which releases hydrogen gas, increases the porosity, and decreases the compressive strength.


2015 ◽  
Vol 815 ◽  
pp. 164-169
Author(s):  
Ng Hooi Jun ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
Kamarudin Husin ◽  
Soo Jin Tan ◽  
Mohd Firdaus Omar

Utilization and suitability of bottom ash in Portland cement have been increasing significantly in recent year. Bottom ash has substantial effects on mechanical properties with different composition of replacement in mixture of bottom ash and Portland cement. Bottom ash was used to determine the feasibility of the substitution as recycling product from industry depending on the percentage of the bottom ash. On the other hand, bottom ash offers a better solution for maintaining materials characteristic of Portland cement mortar and also provide beneficial mechanical performance. The result of using bottom ash in Portland cement mortar showed that it could make better the mechanical properties and hence disposed bottom ash wastes safely in technical, economic and environmental methods.


2011 ◽  
Vol 194-196 ◽  
pp. 1017-1021
Author(s):  
Hui Mi Hsu ◽  
Hao Hsien Chen ◽  
Sao Jeng Chao ◽  
An Cheng ◽  
Cheng Yang Wu ◽  
...  

The disposal and reuse of waste combustion residues has become a critical topic recently in view of the method of treating household wastes in a city, which has gradually changed to be incineration (major) and landfill (minor) in densely populated Taiwan, plus the difficulty of various wastes disposed by the Refuse Incineration Plant at Yilan County. To propose concrete recommendations as references for the local competent authorities’ policy for reuse of bottom ash, we researched and analyzed compositions of wastes and ingredients as well as leaching toxicity of bottom ash (accounting for 70% of waste combustion residues) which had been collected from the Li-Ze Incineration plant at Yilan, and transported bottom ash to a cement plant also at Yilan as an alternative material for Portland cement. The results in this study indicated quite a few products, with ingredients of bottom ash from an incineration plant, can be taken as principal compositions used in production of cement, and the capacity of bottom ash treated by the cement plant can be further expanded according to the quality of produced cement and bottom ash properly processed.


2016 ◽  
Vol 857 ◽  
pp. 311-313
Author(s):  
Ng Hooi Jun ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
Kamarudin Hussin ◽  
Soo Jin Tan ◽  
Mohd Firdaus Omar ◽  
...  

Concrete is produced increasingly worldwide and accounting 10-20% emission of carbon dioxide. The potential long term opposing cost of environmental effects need to recognize. Residue of coal combustion ashes especially bottom ash will use to develop reuse application. This study focused on compressive strength of several composition of bottom ash as cement replacement in mortar. Curing of cement mortar techniques and duration also plays an important role and effects on the strength. The objective of this research is to examine the compressive strength of bottom ash in Portland cement under various compositions and fineness of bottom ash.


2020 ◽  
Vol 12 ◽  
pp. e00337 ◽  
Author(s):  
Cherdsak Suksiripattanapong ◽  
Kitsada Krosoongnern ◽  
Jaksada Thumrongvut ◽  
Piti Sukontasukkul ◽  
Suksun Horpibulsuk ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document