scholarly journals Properties of cellular lightweight high calcium bottom ash-portland cement geopolymer mortar

2020 ◽  
Vol 12 ◽  
pp. e00337 ◽  
Author(s):  
Cherdsak Suksiripattanapong ◽  
Kitsada Krosoongnern ◽  
Jaksada Thumrongvut ◽  
Piti Sukontasukkul ◽  
Suksun Horpibulsuk ◽  
...  
2017 ◽  
Vol 68 (10) ◽  
pp. 2367-2372 ◽  
Author(s):  
Ng Hooi Jun ◽  
Mirabela Georgiana Minciuna ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
Tan Soo Jin ◽  
Andrei Victor Sandu ◽  
...  

Manufacturing of Portland cement consists of high volume of natural aggregates which depleted rapidly in today construction field. New substitutable material such as bottom ash replace and target for comparable properties with hydraulic or pozzolanic properties as Portland cement. This study investigates the replacement of different sizes of bottom ash into Portland cement by reducing the content of Portland cement and examined the mechanism between bottom ash (BA) and Portland cement. A cement composite developed by 10% replacement with 1, 7, 14, and 28 days of curing and exhibited excellent mechanical strength on day 28 (34.23 MPa) with 63 mm BA. The porous structure of BA results in lower density as the fineness particles size contains high specific surface area and consume high quantity of water. The morphology, mineralogical, and ternary phase analysis showed that pozzolanic reaction of bottom ash does not alter but complements and integrates the cement hydration process which facilitate effectively the potential of bottom ash to act as construction material.


2019 ◽  
Vol 138 (6) ◽  
pp. 4561-4569 ◽  
Author(s):  
Wiesława Nocuń-Wczelik ◽  
Katarzyna Stolarska

Abstract The studies focused on the kinetics of early hydration in the high-calcium aluminate cement (CAC 70)—by-pass cement kiln dusts (BPCKD)—mixtures. For this purpose, the mixtures of cement with this additive or with some potential constituents of dusts were produced. The microcalorimeter was applied to follow the kinetics of hydration. The investigations with the aim of finding the relationship between the components of initial mixtures and the modification of hydration process were carried out. The rheological properties were characterized, and the chemical shrinkage characteristics were produced. The phase assemblage characterization and microscopic observations were done as well. In case of the high-calcium aluminate-based binders, the modification of setting process was observed; the rheological properties and chemical shrinkage were affected too. The acceleration of heat evolution—the shortening of so-called induction period in the presence of BPCKD additive—was observed. The results were compared to those obtained for the CAC with ordinary Portland cement additive. The results of calorimetric measurements are discussed in terms of the chemical and phase assemblage of this additive as compared to the Portland cement clinker precursors and potassium chloride—the solid and liquid components of the dust.


2020 ◽  
Vol 38 (8) ◽  
pp. 868-875
Author(s):  
Marc Antoun ◽  
Frédéric Becquart ◽  
Najib Gerges ◽  
Georges Aouad

Municipal solid waste incineration generates large quantities of bottom ash that should be recycled. Current use of municipal solid waste incineration bottom ash (MSWI-BA) in cementitious materials is mostly in Ordinary Portland Cement (OPC). This paper considers using MSWI-BA as sand substitution in Calcium Sulfoaluminate Cement (CSA) as an alternative to OPC. A comparison between OPC and CSA mortars containing 0–2 mm MSWI-BA is conducted. The MSWI-BA used was treated to remove the ferrous and non-ferrous metals in order to obtain a better mineral fraction. Different percentages (0%, 25%, 50%, 75%, and 100%) of standard sand were substituted by MSWI-BA based on equivalent volume. Experimental results showed that the compressive strength and porosity of the CSA mortars were superior to OPC after substitution at 1, 7, 28, and 90 days. The compressive strength of OPC mortars with 25% substitution decreased by 40% compared to 11% for CSA mortars at 90 days. This is due to the difference in pH between the two cement pastes as OPC in contact with the MSWI-BA leads to a reaction with the aluminum content which releases hydrogen gas, increases the porosity, and decreases the compressive strength.


1985 ◽  
Vol 65 ◽  
Author(s):  
G. J. McCarthy ◽  
O. E. Manz ◽  
R. J. Stevenson ◽  
D. J. Hassett ◽  
G. H. Groenewold

With financial support from utilities and ash brokers*, the Western Fly Ash Research, Development and Data Center was established under the aegis of the North Dakota Mining and Mineral Resources Research Institute in August of 1985. Research will be performed by the two North Dakota universities in Grand Forks and Fargo. The fundamental objective of the Center is to enhance the knowledge base of the properties (chemical, mineralogical and physical) and reactions of the coal by-products (principally fly ash, but including bottom ash and FGD waste) produced in the Midwestern and Great Plains regions of the US. Most of the study specimens will be high-calcium (ASTM Class C) ash derived from low-rank lignite and subbituminous coals mined in North Dakota, Montana and Wyoming, although ash from other regions and coals is also being studied. The enhanced knowledge base should lead to more widespread utilization of these by-products [1,2] or, where this is necessary, to their safe and cost-effective disposal [3].


2015 ◽  
Vol 27 (5) ◽  
pp. 04014158 ◽  
Author(s):  
Patimapon Sukmak ◽  
Pre De Silva ◽  
Suksun Horpibulsuk ◽  
Prinya Chindaprasirt

2015 ◽  
Vol 815 ◽  
pp. 164-169
Author(s):  
Ng Hooi Jun ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
Kamarudin Husin ◽  
Soo Jin Tan ◽  
Mohd Firdaus Omar

Utilization and suitability of bottom ash in Portland cement have been increasing significantly in recent year. Bottom ash has substantial effects on mechanical properties with different composition of replacement in mixture of bottom ash and Portland cement. Bottom ash was used to determine the feasibility of the substitution as recycling product from industry depending on the percentage of the bottom ash. On the other hand, bottom ash offers a better solution for maintaining materials characteristic of Portland cement mortar and also provide beneficial mechanical performance. The result of using bottom ash in Portland cement mortar showed that it could make better the mechanical properties and hence disposed bottom ash wastes safely in technical, economic and environmental methods.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Ganesan Lavanya ◽  
Josephraj Jegan

This study presents an investigation into the durability of geopolymer concrete prepared using high calcium fly ash along with alkaline activators when exposed to 2% solution of sulfuric acid and 5% magnesium sulphate for up to 45 days. The durability was also assessed by measuring water absorption and sorptivity. Ordinary Portland cement concrete was also prepared as control concrete. The grades chosen for the investigation were M20, M40, and M60. The alkaline solution used for present study is the combination of sodium silicate and sodium hydroxide solution with the ratio of 2.50. The molarity of sodium hydroxide was fixed as 12. The test specimens were150×150×150 mm cubes,100×200 mm cylinders, and100×50 mm discs cured at ambient temperature. Surface deterioration, density, and strength over a period of 14, 28, and 45 days were observed. The results of geopolymer and ordinary Portland cement concrete were compared and discussed. After 45 days of exposure to the magnesium sulfate solution, the reduction in strength was up to 12% for geopolymer concrete and up to 25% for ordinary Portland cement concrete. After the same period of exposure to the sulphuric acid solution, the compressive strength decrease was up to 20% for geopolymer concrete and up to 28% for ordinary Portland cement concrete.


2011 ◽  
Vol 194-196 ◽  
pp. 1017-1021
Author(s):  
Hui Mi Hsu ◽  
Hao Hsien Chen ◽  
Sao Jeng Chao ◽  
An Cheng ◽  
Cheng Yang Wu ◽  
...  

The disposal and reuse of waste combustion residues has become a critical topic recently in view of the method of treating household wastes in a city, which has gradually changed to be incineration (major) and landfill (minor) in densely populated Taiwan, plus the difficulty of various wastes disposed by the Refuse Incineration Plant at Yilan County. To propose concrete recommendations as references for the local competent authorities’ policy for reuse of bottom ash, we researched and analyzed compositions of wastes and ingredients as well as leaching toxicity of bottom ash (accounting for 70% of waste combustion residues) which had been collected from the Li-Ze Incineration plant at Yilan, and transported bottom ash to a cement plant also at Yilan as an alternative material for Portland cement. The results in this study indicated quite a few products, with ingredients of bottom ash from an incineration plant, can be taken as principal compositions used in production of cement, and the capacity of bottom ash treated by the cement plant can be further expanded according to the quality of produced cement and bottom ash properly processed.


Sign in / Sign up

Export Citation Format

Share Document