Investigation of Thermo-Hydraulic Performance for Different Arrangements of Ribs in Rectangular Solar Air Channel

2021 ◽  
pp. 521-534
Author(s):  
J. Singh ◽  
A. Sharma ◽  
R. Chauhan
Irriga ◽  
2003 ◽  
Vol 8 (1) ◽  
pp. 63-68 ◽  
Author(s):  
Marco Antonio Fonseca Conceição ◽  
Rubens Duarte Coelho

RELAÇÃO VAZÃO x PRESSÃO EM MICROASPERSORES DAN 2001 SOB CONDIÇÃO ADVERSA DE OPERAÇÃO  Marco Antônio Fonseca ConceiçãoEmbrapa Uva e Vinho, Estação Experimental de Jales, Jales, SP. CP 241. CEP 15700-000.E-mail: [email protected] Duarte CoelhoDepartamento de Engenharia Rural, Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, Piracicaba, SP. CP 09, CEP 13418-900.E-mail: [email protected]  1 RESUMO  Alguns microaspersores possuem membranas que regulam a sua pressão de operação, mantendo a vazão praticamente estável dentro de uma faixa de pressão na rede hidráulica. Operadores de irrigação no campo, muitas vezes com baixo nível de instrução e sem orientação profissional qualificada, visando reduzir problemas de entupimento ou para diminuir o tempo de irrigação, costumam retirar as membranas autocompensantes para aumentar a vazão do emissores, o que pode comprometer o desempenho hidráulico do sistema. Para avaliar o efeito da retirada da membrana  sobre as vazões dos microaspersores, no presente trabalho determinou-se as relações entre pressão e vazão para sete bocais do microaspersor DAN 2001, operando na ausência da membrana autocompensante. As curvas pressão-vazão sem as membranas autocompensantes apresentaram comportamento potencial com expoentes variando entre 0,58 e 0,64. As vazões dos microaspersores sem as membranas aumentaram de forma inversamente proporcional aos diâmetros dos emissores, quando comparadas às vazões nominais com as membranas.  UNITERMOS: Hidráulica, irrigação, microaspersão.  CONCEIÇÃO, M.A.F.; COELHO, R.D. FLOW X PRESSURE RELATIONSHIP FOR DAN 2001 MICROSPRINKLERS UNDER ADVERSE CONDITION  2 ABSTRACT  Many types of microsprinklers have a self-compensating membrane to regulate their pressure, keeping a stable flow. Many producers usually take the membranes off to reduce clogging problems  or irrigation time. This procedure could endanger the system hydraulic performance. To evaluate the effect of taking off the self-compensating membrane from microsprinklers it was determined, in the present work, the pressure-flow relationship for seven Dan 2001 microsprinkler nozzles operating without the membrane. The pressure-flow curves presented a potential behavior with the exponents varying from 0.58 to 0.64. Microsprinkler flows without the membranes increased inversely proportional to the emitter diameters, comparing to the nominal flows using the membranes.  KEYWORDS: Hydraulic, irrigation, microsprinkler.


Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 458
Author(s):  
Drew C. Baird ◽  
Benjamin Abban ◽  
S. Michael Scurlock ◽  
Steven B. Abt ◽  
Christopher I. Thornton

While there are a wide range of design recommendations for using rock vanes and bendway weirs as streambank protection measures, no comprehensive, standard approach is currently available for design engineers to evaluate their hydraulic performance before construction. This study investigates using 2D numerical modeling as an option for predicting the hydraulic performance of rock vane and bendway weir structure designs for streambank protection. We used the Sedimentation and River Hydraulics (SRH)-2D depth-averaged numerical model to simulate flows around rock vane and bendway weir installations that were previously examined as part of a physical model study and that had water surface elevation and velocity observations. Overall, SRH-2D predicted the same general flow patterns as the physical model, but over- and underpredicted the flow velocity in some areas. These over- and underpredictions could be primarily attributed to the assumption of negligible vertical velocities. Nonetheless, the point differences between the predicted and observed velocities generally ranged from 15 to 25%, with some exceptions. The results showed that 2D numerical models could provide adequate insight into the hydraulic performance of rock vanes and bendway weirs. Accordingly, design guidance and implications of the study results are presented for design engineers.


2021 ◽  
Vol 13 (11) ◽  
pp. 6462
Author(s):  
Mir Waqas Alam ◽  
Basma Souayeh

In the present decade, research regarding solar thermal air heaters (SAHs) has noticed a continuous progression in thermo-hydraulic performance augmentation approaches. There now exists a wide variety of thermo-hydraulic performance augmentation approaches and researchers have designated various structures. Nevertheless, there seems to be no generalization to any of the approaches employed. The present numerical investigation reports on the thermo-hydraulic characteristics and thermal performance for flow through a varied length (full, medium, half, and short length) dimple solar air heater (SAH) tube. The study highlights recent developments on enhanced tubes to augment heat transfer in SAH. The influence of different length ratio, dimple height ratio (H), and pitch ratio (s) on thermo-hydraulic characteristics have been investigated in the Reynolds number (Re) range from 5000 to 25,000. Air is used as the working fluid. The commercial software ANSYS Fluent is used for simulation. The shear stress transport (SST) model is used as the turbulence model. Thermal energy transport coefficient is increased in the full-length dimple tube (FLDT), compared to the medium-length dimple tube (MLDT), half-length dimple tube (HLDT) and short-length dimple tube (SLDT). Similarly, the pitch ratio (s) has more influence on Nusselt number (Nu) compared to the dimple height ratio (H). The friction factor decreases with an increase in pitch ratio. Nu increases and f decreases with increasing Re for all combinations of H and s. Low s and higher H yields high enhancement of HT and PD. Integration of artificial roughness on the tube increases the values of Nu and f by 5.12 times and 77.23 times for H = 0.07, s = 1.0 at Re value of 5000 and 25,000, respectively, in regard to the plain tube. For all the tested cases, the thermo-hydraulic performances (η) are greater than unity.


Sign in / Sign up

Export Citation Format

Share Document