Compressive Strength of Concrete Using Recycled Glass and Red Ash as a Partial Replacement of Fine Aggregate (Experimental Investigation)

Author(s):  
Muluken Gebre Worku ◽  
Pandurang B. Khawal ◽  
Shashi Shekhar Singh
Author(s):  
Harish R ◽  
Ramesh S ◽  
Tharani A ◽  
Mageshkumar P

This paper presents the results of an experimental investigation of the compressive strength of concrete cubes containing termite mound soil. The specimens were cast using M20 grade of concrete. Two mix ratios for replacement of sand and cement are of 1:1.7:2.7 and 1:1.5:2.5 (cement: sand: aggregate) with water- cement ratio of 0.45 and varying combination of termite mound soil in equal amount ranging from 30% and 40% replacing fine aggregate (sand) and cement from 10%,15%,20% were used. A total of 27 cubes, 18 cylinders and 6 beams were cast by replacing fine aggregate, specimens were cured in water for 7,14 and 28 days. The test results showed that the compressive strength of the concrete cubes increases with age and decreases with increasing percentage replacement of cement and increases with increasing the replacement of sand with termite mound soil cured in water. The study concluded that termite mound cement concrete is adequate to use for construction purposes in natural environment.


This paper presents an experimental investigation on the properties of concrete in which like cement is partially replacing by used nano silica and is partially replacing by used waste foundry sand. Because now a day the world wide consumption of sand as cement and as fine aggregate in concrete production is very high. Nano silica and waste foundry sand are major by product of casting industry and create land pollution. The cement will be replaced with nano silica and the river sand will be replaced with waste foundry sand (0%, 5%, 10%, 15%, 20%). This experimental investigation was done and found out that with the increase in the nano silica and waste foundry sand ratio. Compression test has been done to find out the compressive strength of concrete at the age of 7, 14, 21, and 28. Test result indicates in increasing compressive strength of plain concrete by inclusion of nano silica as a partial replacement of cement and waste foundry sand as a partial replacement of fine aggregate.


2013 ◽  
Vol 795 ◽  
pp. 356-359 ◽  
Author(s):  
Mohd Irwan Juki ◽  
Mazni Awang ◽  
Mahamad Mohd Khairil Annas ◽  
Koh Heng Boon ◽  
Norzila Othman ◽  
...  

This paper describes the experimental investigation of relationship between splitting tensile strength and flexural strength with the compressive strength of concrete containing waste PET as fine aggregates replacement. Waste PET was reprocesses and used as the artificial fine aggregate at the replacement volume of 25%, 50% and 75%, Cylindrical and prism specimens were tested to obtain the compressive, splitting tensile and flexural strength at the age of 28 days. Based on the investigation, a relationship for the prediction of splitting tensile and flexural strength was derived from the compressive strength of concrete containing waste PET as fine agglegate replacement.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Eluozo S.N. ◽  
Dimkpa K

Wood and fly ash were observed to have significant qualities that could improved the strength of self compacting concrete, the material were applied to increase the compressive strength of concrete strength, this material could be the demanding material for partial  replacement for cement, the study observed the behaviour of the material from experts that applied these material through experimental investigation, but the study monitored the behaviour of this material by applied modeling and simulation to determine other effect that could influence the behaviour of this materials in compressive strength, this was to determine the  significant effect on the addictive applied as partial replacement for cement, lots of experts has done works on fly ash through experiment concept, but the application of predictive concept has not be carried out, the  adoption of this concept has expressed other parameters that contributed to the efficiency of  wood and fly ash as partial replacement for cement on self compacting concrete. The study adopting modeling and simulation observed 10 and 20% by weight of cement as it is reflected on its performance in the simulation, from the simulation wood recorded 10% as it was observed from the growth rate of this self compacting concrete reflected from the trend, the simulation for model validation were compared with the works of the studies carried out [20]. And both values developed best fits correlation


2018 ◽  
Vol 7 (3.3) ◽  
pp. 14 ◽  
Author(s):  
Professor P.Venkatreddy ◽  
A Siva Krishna ◽  
G SwamyYadav

In this article, the effect of replacing cement with silica fume and fine aggregate with copper slag has been investigated. For this research work, concrete of M40 grade is prepared and evaluated for fresh and harden concrete properties such as compressive strength, tensile strength and flexural strength. Further, the cement is replaced with silica fume at 0, 2, 4, 6, 8 and 10 % and fine aggregate replaced with copper slag at 0, 10, 20, 30, 40 and 50 %. Compressive strength, strength and Flexure strength have been tested. It is observed from the results that the use of silica fume and copper slag as partial replacement material improves mechanical properties of the concrete. Concrete with 40 % copper slag and 8 % silica fume shows better performance among all the mixes.  


Sign in / Sign up

Export Citation Format

Share Document