scholarly journals Experimental Investigation on Rcc by Using Multiple Admixtures

2018 ◽  
Vol 7 (3.3) ◽  
pp. 14 ◽  
Author(s):  
Professor P.Venkatreddy ◽  
A Siva Krishna ◽  
G SwamyYadav

In this article, the effect of replacing cement with silica fume and fine aggregate with copper slag has been investigated. For this research work, concrete of M40 grade is prepared and evaluated for fresh and harden concrete properties such as compressive strength, tensile strength and flexural strength. Further, the cement is replaced with silica fume at 0, 2, 4, 6, 8 and 10 % and fine aggregate replaced with copper slag at 0, 10, 20, 30, 40 and 50 %. Compressive strength, strength and Flexure strength have been tested. It is observed from the results that the use of silica fume and copper slag as partial replacement material improves mechanical properties of the concrete. Concrete with 40 % copper slag and 8 % silica fume shows better performance among all the mixes.  

2018 ◽  
Vol 760 ◽  
pp. 176-183 ◽  
Author(s):  
Tereza Pavlů

The main aim of this contribution is comparison the properties of fine aggregate concrete with partial replacement of sand by fine recycled aggregate. The fine recycled aggregate originated from two different sources. The main topic of this article is the study of influence of the origin of FRA to fine aggregate concrete properties. The compressive strength, flexural strength and freeze-thaw resistance were tested. The mechanical properties and weight were examined after 28 and 60 days and after 25, 50, 75 and 100 cycles of freeze-thaw. Partial replacement of sand was 25 and 50 % for all these tests. The properties were investigated by using prismatic specimens.


Concrete plays an important role in every construction. This paper is an experimental investigation to study the mechanical properties of the concrete with partial replacement of cement by dolomite powder and fine aggregate by copper slag. So, in this investigation, by usage of Dolomite powder in concrete on one side improves density and other side improves strength and hardness. Copper slag also increases density of concrete and toughness of concrete. The cement content replaced with dolomite and fine aggregate replaced with copper slag from 5% to 25% at regular intervals of 5%. In the designed mix proportion of M30 grade concrete is 1:2.17:2.95. The Superplasticizer Master Rheobuild 920SH of 0.5% dosage used as chemical admixture is added to the concrete to maintain 0.45 the water-cement ratio. The concrete cubes, cylinders were casted. The different mechanical properties like compressive strength, split tensile strength, flexural strength were tested after 3 days, 7 days and 28 days of curing from 5 to 25% at regular intervals of 5% replacement of cement with dolomite powder and 10% to 50% at regular intervals of 10% replacement of fine aggregate with copper slag.


Author(s):  
Diksha Jain

Abstract: This research focuses on studying the effect of Mild Steel Scrap and Crusher Dust on the Properties of Concrete Mixes as a partial replacement of Sand. The trend of mixing several kinds of additional materials such as Glass powder, plastic, Quarry dust, Copper slag, Steel scrap, in building engineering is now growing. Consumption of Crusher dust and Mild steel scrap are one of the lively research area that include the effectiveness of replacement in all the aspects of construction materials. It is very significant to develop eco-friendly concrete from ceramic waste. This Research deals with the experimental study on the mechanical strength properties of M20 grade concrete with the partial replacement of fine aggregate by using crusher dust and mild Steel Scrap. In order to analyze the mechanical properties such as Compressive Strength, Spilt tensile strength, and Workability the samples were casted with mild steel scrap having constant proportion of 5% and crusher dust having 10%, 15% ,20% 25%, 30%, 35%, 40% partial replacement. In second category sand has been partially replaced by mild steel scrap proportion of 10%, 15%, 20%, 25%, 30%, 35% and crusher dust by 20%, 25%, 30% 35% at a different periods of curing 7 days, and 28 days. The optimal of percentage addition of Crusher dust and Mild steel scrap are analyzed considering the needs of mechanical properties of concrete. Keywords: Crusher Dust, Mild Steel Scrap, Compressive Strength, Spilt tensile Strength, Mechanical properties,


2018 ◽  
Vol 7 (2.23) ◽  
pp. 443
Author(s):  
USHAKRANTI J ◽  
SRINIVASU K ◽  
NAGA SAI

Currently situation, improvement of infrastructure has created an excessive demand for herbal sand, which makes it greater expensive and leads to environmental imbalances. The utilization of suitable sustainable choice materials proves that it is the most efficacious choice to traditional concrete materials and can take care of the surrounding environment. Copper slag is an industrial byproduct of copper production. Copper slag is a high-gravity glassy granular material. This paper reports some experimental studies on the outcome of partially changed sand from impact of copper slag on the mechanical houses of concrete. M30 concrete adopts copper slag plan and partly substitutes high-quality combination fines by means of 0%, 10%, 20%, 30%, 40%, 50%, 60%, 80% and 100%. The mechanical properties of concrete measured in the laboratory encompass compressive strength, split tensile strength and bending tensile strength. The have an impact on of partly replacing the quality aggregates with copper slag on the compressive strength, the cut up tensile power of the cylinder and the bending power of the prism has been evaluated. Water absorption assessments have been also conducted to report the impact of copper slag on the absorption price of concrete. Test results affords that it is feasible to utilize copper slag as best aggregate in concrete. 


This paper presents an experimental investigation on the properties of concrete in which like cement is partially replacing by used nano silica and is partially replacing by used waste foundry sand. Because now a day the world wide consumption of sand as cement and as fine aggregate in concrete production is very high. Nano silica and waste foundry sand are major by product of casting industry and create land pollution. The cement will be replaced with nano silica and the river sand will be replaced with waste foundry sand (0%, 5%, 10%, 15%, 20%). This experimental investigation was done and found out that with the increase in the nano silica and waste foundry sand ratio. Compression test has been done to find out the compressive strength of concrete at the age of 7, 14, 21, and 28. Test result indicates in increasing compressive strength of plain concrete by inclusion of nano silica as a partial replacement of cement and waste foundry sand as a partial replacement of fine aggregate.


Materials ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1821 ◽  
Author(s):  
Robert Bušić ◽  
Mirta Benšić ◽  
Ivana Miličević ◽  
Kristina Strukar

The paper aims to investigate the influence of waste tire rubber and silica fume on the fresh and hardened properties of self-compacting concrete (SCC) and to design multivariate regression models for the prediction of the mechanical properties of self-compacting rubberized concrete (SCRC). For this purpose, 21 concrete mixtures were designed. Crumb rubber derived from end-of-life tires (grain size 0.5–3.5 mm) was replaced fine aggregate by 0%, 5%, 10%, 15%, 20%, 25%, and 30% of total aggregate volume. Silica fume was replaced cement by 0%, 5%, and 10% of the total cement mass. The optimal replacement level of both materials was investigated in relation to the values of the fresh properties and mechanical properties of self-compacting concrete. Tests on fresh and hardened self-compacting concrete were performed according to the relevant European standards. Furthermore, models for predicting the values of the compressive strength, modulus of elasticity, and flexural strength of SCRC were designed and verified with the experimental results of 12 other studies. According to the obtained results, mixtures with up to 15% of recycled rubber and 5% of silica fume, with 28 days compressive strength above 30 MPa, were found to be optimal mixtures for the potential future investigation of reinforced self-compacting rubberized concrete structural elements.


Sign in / Sign up

Export Citation Format

Share Document