ANN Model-Based Performance Simulation of a Solar PV Operated Helical Rotor Water Pump

2021 ◽  
pp. 1-8
Author(s):  
Yuvraj Praveen Soni ◽  
E. Fernandez
Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5840
Author(s):  
Bat-Erdene Bayandelger ◽  
Yuzuru Ueda ◽  
Amarbayar Adiyabat

There are approximately 200,000 households living in detached houses and gers (yurts) with small coal stoves that burn raw coal in Ulaanbaatar city. A proper heating system and improvement of the energy efficiency of residential dwellings are vitally important for Ulaanbaatar city to reduce air pollution as well as for the operation of the current central energy system. This study shows the experimental results for two gers with two different heating systems and different thermal insulation, for investigating the merits of each. The technical feasibility of the system consisting of an electric thermal storage (ETS) heater with a daytime charging schedule and areal photovoltaic (PV) system was also examined by using a simulation with software developed in MATLAB (R2020a, MathWorks, USA). As a result of the experiment, the indoor comfort level and energy efficiency of the ger with added insulation and an ETS heater with nighttime charging were shown to be enhanced compared with those of the reference ger. The ger with added insulation and the ETS heater consumed 3169 kWh for electric appliances and 5989 kWh for the heating season. The simulation showed that the PV self-consumption rate is 76% for the Ger 2 with the ETS heater because of the daytime charging schedule of the ETS heater. The PV system supplied 31% of the total energy consumed, with the remaining 69% from the main grid.


Energies ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 3423 ◽  
Author(s):  
Hu ◽  
d’Ambrosio ◽  
Finesso ◽  
Manelli ◽  
Marzano ◽  
...  

A comparison of four different control-oriented models has been carried out in this paper for the simulation of the main combustion metrics in diesel engines, i.e., combustion phasing, peak firing pressure, and brake mean effective pressure. The aim of the investigation has been to understand the potential of each approach in view of their implementation in the engine control unit (ECU) for onboard combustion control applications. The four developed control-oriented models, namely the baseline physics-based model, the artificial neural network (ANN) physics-based model, the semi-empirical model, and direct ANN model, have been assessed and compared under steady-state conditions and over the Worldwide Harmonized Heavy-duty Transient Cycle (WHTC) for a Euro VI FPT F1C 3.0 L diesel engine. Moreover, a new procedure has been introduced for the selection of the input parameters. The direct ANN model has shown the best accuracy in the estimation of the combustion metrics under both steady-state/transient operating conditions, since the root mean square errors are of the order of 0.25/1.1 deg, 0.85/9.6 bar, and 0.071/0.7 bar for combustion phasing, peak firing pressure, and brake mean effective pressure, respectively. Moreover, it requires the least computational time, that is, less than 50 s when the model is run on a rapid prototyping device. Therefore, it can be considered the best candidate for model-based combustion control applications.


2021 ◽  
Vol 11 (1) ◽  
pp. 249-253
Author(s):  
Nelson S. Andres

Abstract This study discusses a solar-powered water pump system with 3D printed impeller which was developed to serve as water irrigation to small and medium farms in Bataan, Philippines. One kW solar PV system was used to power an electric motor that drives the centrifugal pump with impeller. In order to minimize the power consumption of the pump, the material of its impeller was changed from brass to plastic using 3D printing technology. The water system was also made automatic so that the water pump will run and stop at the desired schedule of the farmer. Furthermore, in order to provide power at night, storage batteries which are enough to supply the load, were incorporated in the system. Through a series of testing, it is concluded that it is more economical to use a 3D printed plastic impeller than metal impeller in watering small and medium farms considering that there were appreciative changes observed in relation to their water output and power consumption.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Edward M. Querikiol ◽  
Evelyn B. Taboada

A study was conducted to evaluate the performance of a 1.5 kW micro off-grid solar power generator in a 2-hectare area of a 23-hectare agricultural farm located in Camotes Island, Cebu, Philippines (10°39.4′ N, 124°20.9′ E). The area requires at least 3000 liters of water every day to irrigate its plantation of passion fruit and dragon fruit; however, there is no water source within the immediate vicinity that can support such requirement. A 1/2 horsepower water pump was installed to provide the required irrigation. A 1.5 kW solar photovoltaic (PV) system consisting of 6 units of 250-watts solar PV panel with corresponding 6 units of 200 ampere-hour deep cycle batteries managed by a 3-kW industrial grade inverter provided the power for the water pump and supplied for the electricity demand of the farm. The actual energy usage of the farm was measured from the built-in monitoring of the charge controller and the installed system was analyzed to determine its efficiency in meeting the actual load demand. The HOMER optimization tool was used to determine the optimal configuration for the micro off-grid system based on the actual load demand. Simulation results showed that the optimum configuration that could supply the actual load is a 2.63 kW all-PV system with 8 kWh batteries. Sensitivity analysis was done to consider (1) possible increase in electrical load when the current plantation expands either in progression or outright to its full-scale size of 23 hectares and (2) variations in fuel cost. This study can be considered a good model in assessing renewable energy needs of farms in the country, which can be operationalized for agricultural purposes.


2014 ◽  
Vol 953-954 ◽  
pp. 95-98
Author(s):  
Mohd Najib Mohd Hussain ◽  
Ahmad Maliki Omar ◽  
Intan Rahayu Ibrahim

This paper presents a simulation and laboratory test of Photovoltaic (PV) module incorporated with Positive Output (PO) Buck-Boost Converter for harnessing maximum energy from the solar PV module. The main intention is to invent a system which can harvest maximum power point (MPP) energy of the PV system in string-connection. The model-based design of the controller and maximum power point tracking (MPPT) algorithm for the system were implemented using MATLAB SIMULINK software. For laboratory execution, the digital microcontroller of dsPIC30F digital signal controller (DSC) was used to control the prototype of PO buck-boost converter. The code generation via MPLAB Integrated Development Environment (IDE) from model-based design was embedded into the dsPIC30F using the SKds40A target board and PICkit 3 circuit debugger. The system was successfully simulated and verified by simulation and laboratory evaluations. A physical two PV module of PV-MF120EC3 Mitsubishi Electric is modeled in string connection to represent a mismatch module. While in laboratory process, a string-connection of 10W and 5W PV module is implemented for the mismatch module condition.


2015 ◽  
Vol 1090 ◽  
pp. 101-106
Author(s):  
Kai Huang ◽  
Cheng Wei Zhong

The back propagation artificial neural networks (BP-ANN) use a resilient back-propagation algorithm and early stopping technique. By inputing the properties of geometries and material, NNs can predict the strength of lightweight concrete. An BP-ANN model based on feed-forward neural network is built, trained and tested using the available test data of 148 mix records collected from the technical literature. And the test results are compared and analyzed with experimental data . It shows that the strength of lightweight concrete obtained by the simplified model based on NNs are in good agreement with test results, and they are close to the experimental values. The NNs model can be used in the shear strength prediction and design for the strength of lightweight concrete.


Sign in / Sign up

Export Citation Format

Share Document