Test Evaluation of Thermal Protection Performance of Flame-Retardant Protective Clothing

2021 ◽  
pp. 335-340
Author(s):  
Chenming Li ◽  
Yuhong Shen ◽  
Liying Liu ◽  
Mei Tong ◽  
Feng Li
2013 ◽  
Vol 796 ◽  
pp. 607-612
Author(s):  
Fei Fei Li ◽  
Chun Qin Zheng ◽  
Guan Mei Qin ◽  
Xiao Hong Zhou

Thermal insulation and flame-retardant (TIFR) protective clothing, which has good thermal protective performance (TPP), could protect people from high-temperature or flame in casting industry, the petrochemical industry, fire industry and et al. That is, TIFR protective clothing must have certain function of slowing or restraining heat transmission, and insulating radiant heat and convection heat from high temperature heat source. The construction of TIFR protective clothing is being developed from single layer to multi-layer fabrics made by flame-retardant (FR) fibre. In this paper, based on TPP-206 tester, the TPP coefficient of single and multi-layer fabrics with flame-retardant were measured, and the TPP of TIFR protective clothing was analyzed. TPP coefficient of single fabrics included the FR viscose non-woven fabric do not meet the standard. That of all of multi-layer fabrics meet the standard requirement, and the FR viscose/wool blended fabric is not suitable for fire fighter. It is significant and the most observable effect to put the PTFE membrane between the outer layer and the insulating layer. It could improve the overall thermal protection performance.


2012 ◽  
Vol 441 ◽  
pp. 255-260 ◽  
Author(s):  
Wei Bang Chen ◽  
Ying Ying Wan ◽  
Fei Que ◽  
Xue Mei Ding

Flame retardant fabrics have been broadly used for protective clothing, which have strictly requirements on both flame retardancy and thermal protection. Usually, domestic laundering will be carried out frequently to clean these protective garments. However, little research on the performance durability of this type of fabrics after domestic laundering has been reported. This paper selected fabrics of 8 types of cotton and its blend fibers, which were treated with flame retardants Pyrovatex CP, Proban, CFR-201, SCJ-968 respectively. The damaged length, after flame time, after glow time, TPP value, thermal resistance value, weight, thickness, air permeability and water vapor permeability (WVP) of the samples were measured before and after 15 cycles domestic laundering cycles. Results show that the flame retardancy of the 8 fabrics reduce with launderings as measured by the increase in damaged length and after glow time. The TPP increase probably resulted from the increase in the thickness and thermal resistance of the finished fabrics. Domestic laundering resulted in only a slight change in the comfort properties of the fabrics.


Fire fighters are commonly exposed to intense heat and fire. They suppressed fire by spraying water to avoid flame from spreading. They are enforced to use the Personal Protective Clothing (PPC) made of the flame-retardant material to protect themselves from the skin burn injury. Skin burn injury is the most common injury occurs among them. Yet, the exposure to extreme heat and moisture absorption into the clothing layers caused severe burn injury formation. The purpose of this study is to investigate the effect of air gap combined with the moisture absorption in the fabrics using Finite Element Method (FEM) and the Bio heat Equation. From the simulation experiment it is discovered the air gap is a good insulator capable of preventing skin burn with a skin temperature of 48°C. However, the presence of moisture strongly affects skin temperature. It had elevated to 59.64°C forming a second-degree type burn injury. The presence of moisture had weakened thermal protection of the flame-retardant material and the air gap against the heat flux. It is found the moist material properties had enhanced heat transfer from the heat flux to the skin surface resulting severe skin burn despite they were encapsulated with the Personal Protective Clothing (PPC)


2020 ◽  
Vol 20 (3) ◽  
pp. 1780-1789 ◽  
Author(s):  
Priyanka Katiyar ◽  
Shraddha Mishra ◽  
Anurag Srivastava ◽  
N. Eswara Prasad

TiO2, SiO2 and their hybrid nanocoatings are prepared on inherent flame retardant textile substrates from titanium(IV)iso-proproxide (TTIP) and tetraethoxysilane (TEOS) precursors using a sol–gel process followed by hydrothermal treatment. The coated samples are further functionalized by hexadecyltrimethoxysilane (HDTMS) to impart superhydrophobicity. Sample characterization of the nanosols, nanoparticles and coated samples are investigated using, X-ray diffractometer, transmission electron microscopy, scanning electron microscopy, UV-Vis spectroscopy, contact angle measurement. Stain degradation test under mild UV irradiation shows almost 54% degradation of coffee stain within 4 hours measured by Spectrophotometer. UV-Vis Absorption Spectroscopy demonstrates complete degradation of methyl orange colorant within 3 hours. Hybrid nanosol coated and HDTMS modified inherent flame retardant polyester surfaces show apparent water contact angle as ~145°, which is much closer to proximity of superhydrophobic surfaces. Thus, the novelty of present work is, by using sol–gel technique, a bi-functional textile surface has been developed which qualifies the very specific requirements of protective clothing like self-cleaning property (imparted by TiO2 nanoparticles) and superhydrophobicity (imparted by SiO2 nanoparticles and further surface modification by HDTMS), which are entirely contradictory in nature, in a single fabric itself. Thus developed textile surfaces also possess the other attributes of protective clothing like flame retardancy and air permeability.


2020 ◽  
Vol 20 (6) ◽  
pp. 109-114
Author(s):  
Hoseung Ro ◽  
Hyunpil Hong ◽  
Jinwon Cho ◽  
Myuongsu Park

To develop industrial and firefighter thermal protection cloth, 12 base fabrics were prepared from a combination of several types of sample, and their thermal performances were evaluated. Thermal performance comprises flame retardant capability, radiant protective performance, and thermal protective performance. Thermal protection performance has been assessed in accordance with ISO 15025, ISO 9151, ISO 6942, and ISO 17492. In this study, however, thermal protective performance was assessed only in accordance with ISO 15025. The results showed that Samples 1-6 satisfied the fire resistance criteria, whereas Samples 7-12 did not satisfy the fire resistance criteria. Additional thermal performance tests need to be conducted in follow-up studies.


2021 ◽  
Vol 252 ◽  
pp. 02045
Author(s):  
Shuping Wang ◽  
Fei Gao ◽  
Hao Liu ◽  
Jiaqing Zhang ◽  
Maosong Fan ◽  
...  

The thermal runaway chain reaction of batteries is an important cause of the battery energy storage system (BESS) accidents, and safety protection technology is the key technology to protect the BESS. Although the flame retardant thermal protection material can delay the thermal runaway chain reaction between batteries and reduce the heat conduction between batteries, it has a negative influence on the normal heat dissipation of batteries. In this paper, 12 series of batteries were assembled into the battery pack. The battery pack with closely arranged batteries, the battery pack with 3mm air gap between batteries and the battery pack with flame retardant thermal protection material between batteries were studied. The battery temperatures and temperature differences of these three types of battery packs were cyclically charged and discharged at rated power, and the effects of air gap and flame retardant thermal protection materials on the heat dissipation of batteries under charge/discharge cycle were analysed.


2021 ◽  
Vol 1 (80) ◽  
pp. 45-67
Author(s):  
Marzena Rachwał ◽  
Małgorzata Majder-Łopatka ◽  
Tomasz Węsierski ◽  
Artur Ankowski ◽  
Magdalena Młynarczyk ◽  
...  

Every day, firefighters put their health and life at risk by saving people and their property not only during fires, but by being always ready during all kinds of unfortunate events. Therefore, they need special personal protective equipment, including protective clothing. The purpose of the study was to compare thermal properties of new (PROTON and SYRIUSZ) and old (US-03) personal protective clothing for firefighters. Measurements of thermal insulation (total, effective and local) were carried out using a full body shape thermal manikin Newton consisting of 34 segments, in which temperature and heat flux were controlled independently. Results of the total thermal insulation of the entire clothing reveal differences between all three models. The lowest values were noticed for the model PROTON with light and shorter jacket and the highest values of thermal insulation for the new model SYRIUSZ, indicating that this model protect the user against heat most effectively. New models of personal protective clothing for firefighters should be recommended for use in everyday work, because they are characterized by better parameters than the previous type of protective clothing, both in terms of thermal protection and mobility.


2019 ◽  
Vol 38 (3) ◽  
pp. 212-224 ◽  
Author(s):  
Lijun Wang ◽  
Yehu Lu ◽  
Jiazhen He

To improve thermal protection of protective clothing, temperature-responsive protective fabrics incorporated with shape memory alloy (SMA) springs varying on four different deformation heights and five types arrangement modes were designed. The thermal protection was investigated under radiant heat exposure of 0.39 cal/cm2 s. The results indicated that the air gap between fabric layers produced by SMA springs effectively improved protective performance. The thermal protection of fabrics with different SAM arrangement modes and sizes showed different trends, and the interaction effects of arrangement mode and size were analyzed. Moreover, the optimized arrangement and size of SMA springs were suggested. The regression models were established to assess the relationship between the air gap and thermal protection. This study demonstrated that the combination of flame-resistant fabric with SMA was feasible to develop temperature-responsive protective clothing because it could improve thermal insulating property by producing intelligent air gaps that responded to environment change.


Sign in / Sign up

Export Citation Format

Share Document