A Review on Consensus Protocol of Blockchain Technology

Author(s):  
Arpit Jain ◽  
Dharm Singh Jat
2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Qingqing Xie ◽  
Fan Dong ◽  
Xia Feng

The blockchain technology achieves security by sacrificing prohibitive storage and computation resources. However, in mobile systems, the mobile devices usually offer weak computation and storage resources. It prohibits the wide application of the blockchain technology. Edge computing appears with strong resources and inherent decentralization, which can provide a natural solution to overcoming the resource-insufficiency problem. However, applying edge computing directly can only relieve some storage and computation pressure. There are some other open problems, such as improving confirmation latency, throughput, and regulation. To this end, we propose an edge-computing-based lightweight blockchain framework (ECLB) for mobile systems. This paper introduces a novel set of ledger structures and designs a transaction consensus protocol to achieve superior performance. Moreover, considering the permissioned blockchain setting, we specifically utilize some cryptographic methods to design a pluggable transaction regulation module. Finally, our security analysis and performance evaluation show that ECLB can retain the security of Bitcoin-like blockchain and better performance of ledger storage cost in mobile devices, block mining computation cost, throughput, transaction confirmation latency, and transaction regulation cost.


Entropy ◽  
2019 ◽  
Vol 21 (9) ◽  
pp. 887 ◽  
Author(s):  
Xin Sun ◽  
Mirek Sopek ◽  
Quanlong Wang ◽  
Piotr Kulicki

While Blockchain technology is universally considered as a significant technology for the near future, some of its pillars are under a threat of another thriving technology, Quantum Computing. In this paper, we propose important safeguard measures against this threat by developing a framework of a quantum-secured, permissioned blockchain called Logicontract (LC). LC adopts a digital signature scheme based on Quantum Key Distribution (QKD) mechanisms and a vote-based consensus algorithm to achieve consensus on the blockchain. The main contribution of this paper is in the development of: (1) unconditionally secure signature scheme for LC which makes it immune to the attack of quantum computers; (2) scalable consensus protocol used by LC; (3) logic-based scripting language for the creation of smart contracts on LC; (4) quantum-resistant lottery protocol which illustrates the power and usage of LC.


Recently, Blockchain technology created a buzz in technological world and gained importance as a solution that offers the realization of multiple authoritative domains, where economic transactions are guaranteed. It is very important for such technology to validate the transactions performed by different users flawlessly. To maintain such a trust, Blockchain uses different consensus protocols, where different miners follow them to validate transactions and mine a new block. One such consensus protocol is proof-of-work, where a miner has to solve a puzzle with his computational capabilities. The existing proof-of work mechanisms discriminates a normal user to participate in the mining procedure, as he needs to maintain a specialized hardware which is expensive. In this paper, we propose a new algorithm on basis of crypto-puzzle Integer Prime Factorization, for proof-of-work consensus, which makes a user with minimal hardware capabilities to participate in the mining procedure


Author(s):  
Shantanu bindewari ◽  
Jayesh Surana

The transparency of the block-chain allows more auditing and considerate of elections. These attributes are particular of the necessities of a voting system. These features derive from decentralized network, and can bring additional democratic processes to elections, particularly to direct election systems. For e-voting to develop further open, transparent, and independently auditable, a possible resolution would be base it on blockchain technology. In this research work to proposed technique for voting system using blockchain. The blockchain will be publicly provable and distributed in a method that no one will be intelligent to corrupt it. In this research work proposed a blockchain-based model with Consensus Protocol and SHA256 hash algorithm related with the priorities of the ballot-privacy, veri?ability, suitability, extensiveness, uniqueness, sturdiness, and coercion- resistance.


2021 ◽  
Vol 13 (11) ◽  
pp. 291
Author(s):  
Qian Qu ◽  
Ronghua Xu ◽  
Yu Chen ◽  
Erik Blasch ◽  
Alexander Aved

Blockchain technology has been recognized as a promising solution to enhance the security and privacy of Internet of Things (IoT) and Edge Computing scenarios. Taking advantage of the Proof-of-Work (PoW) consensus protocol, which solves a computation intensive hashing puzzle, Blockchain ensures the security of the system by establishing a digital ledger. However, the computation intensive PoW favors members possessing more computing power. In the IoT paradigm, fairness in the highly heterogeneous network edge environments must consider devices with various constraints on computation power. Inspired by the advanced features of Digital Twins (DT), an emerging concept that mirrors the lifespan and operational characteristics of physical objects, we propose a novel Miner Twins (MinT) architecture to enable a fair PoW consensus mechanism for blockchains in IoT environments. MinT adopts an edge-fog-cloud hierarchy. All physical miners of the blockchain are deployed as microservices on distributed edge devices, while fog/cloud servers maintain digital twins that periodically update miners’ running status. By timely monitoring of a miner’s footprint that is mirrored by twins, a lightweight Singular Spectrum Analysis (SSA)-based detection achieves the identification of individual misbehaved miners that violate fair mining. Moreover, we also design a novel Proof-of-Behavior (PoB) consensus algorithm to detect dishonest miners that collude to control a fair mining network. A preliminary study is conducted on a proof-of-concept prototype implementation, and experimental evaluation shows the feasibility and effectiveness of the proposed MinT scheme under a distributed byzantine network environment.


2021 ◽  
Author(s):  
Muhammad Shafay ◽  
Raja Wasim Ahmad ◽  
Khaled Salah ◽  
Ibrar Yaqoob ◽  
Raja Jayaraman ◽  
...  

Deep learning has gained huge traction in recent years because of its potential to make informed decisions. A large portion of today's deep learning systems are based on centralized servers and fall short in providing operational transparency, traceability, reliability, security, and trusted data provenance features. Also, training deep learning models by utilizing centralized data is vulnerable to the single point of failure problem. In this paper, we explore the importance of integrating blockchain technology with deep learning. We review the existing literature focused on the integration of blockchain with deep learning. We classify and categorize the literature by devising a thematic taxonomy based on seven parameters; namely, blockchain type, deep learning models, deep learning specific consensus protocols, application area, services, data types, and deployment goals. We provide insightful discussions on the state-of-the-art blockchain-based deep learning frameworks by highlighting their strengths and weaknesses. Furthermore, we compare the existing blockchain-based deep learning frameworks based on four parameters such as blockchain type, consensus protocol, deep learning method, and dataset. Finally, we present important research challenges which need to be addressed to develop highly efficient, robust, and secure deep learning frameworks.


2021 ◽  
Author(s):  
Muhammad Shafay ◽  
Raja Wasim Ahmad ◽  
Khaled Salah ◽  
Ibrar Yaqoob ◽  
Raja Jayaraman ◽  
...  

Deep learning has gained huge traction in recent years because of its potential to make informed decisions. A large portion of today's deep learning systems are based on centralized servers and fall short in providing operational transparency, traceability, reliability, security, and trusted data provenance features. Also, training deep learning models by utilizing centralized data is vulnerable to the single point of failure problem. In this paper, we explore the importance of integrating blockchain technology with deep learning. We review the existing literature focused on the integration of blockchain with deep learning. We classify and categorize the literature by devising a thematic taxonomy based on seven parameters; namely, blockchain type, deep learning models, deep learning specific consensus protocols, application area, services, data types, and deployment goals. We provide insightful discussions on the state-of-the-art blockchain-based deep learning frameworks by highlighting their strengths and weaknesses. Furthermore, we compare the existing blockchain-based deep learning frameworks based on four parameters such as blockchain type, consensus protocol, deep learning method, and dataset. Finally, we present important research challenges which need to be addressed to develop highly efficient, robust, and secure deep learning frameworks.


Author(s):  
Rajalakshmi Krishnamurthi ◽  
Tuhina Shree

Blockchain is the world's most trusted service. It serves as a ledger that allows transaction to take place in a decentralized manner. There are so many applications based on blockchain technology, including those covering numerous fields like financial services, non-financial services, internet of things (IoT), and so on. Blockchain combines a distributed database and decentralized ledger without the need of verification by central authority. This chapter surveys the different consensus algorithms, blockchain challenges, and their scope. There are still many challenges of this technology, such as scalability and security problems, waiting to be overcome. The consensus algorithms of blockchain are proof of work (POW), proof of stake (POS), ripple protocol consensus algorithm (RPCA), delegated proof of stake (dPOS), stellar consensus protocol (SCP), and proof of importance (POI). This chapter discusses the core concept of blockchain and some mining techniques, consensus problems, and consensus algorithms and comparison algorithms on the basis of performance.


Author(s):  
Yuefei Gao ◽  
◽  
Shin Kawai ◽  
Hajime Nobuhara

Blockchain – a distributed and public database of transactions – has become a platform for decentralized applications. Despite its increasing popularity, blockchain technology faces a scalability problem: the throughput does not scale with the increasing network size. Thus, in this paper, we propose a scalable blockchain protocol to solve the scalability problem. The proposed method was designed based on a proof of stake (PoS) consensus protocol and a sharding protocol. Instead of transactions being processed by the whole network, the sharding protocol is employed to divide unconfirmed transactions into transaction shards and to divide the network into network shards. The network shards process the transaction shards in parallel to produce middle blocks. Middle blocks are then combined into a final BLOCK in a timestamp recorded on the blockchain. Experiments were performed in a simulation network consisting of 100 Amazon EC2 instances. The latency of the proposed method was approximately 27 s and the maximum throughput achieved was 36 transactions per second for a network containing 100 nodes. The results of the experiments indicate that the throughput of the proposed protocol increases with the network size. This confirms the scalability of the proposed protocol.


2020 ◽  
Vol 17 (5) ◽  
pp. 2402-2404
Author(s):  
G. Subathra ◽  
A. Antonidoss

The Blockchain technology brings a rapid growth in the industry, It emphasizes the service to lead the complexity of software and malicious attack in the network. This technology is used to monitor the highly vulnerable services and it is used to increase the complexity of the warehouse data. It assures the security and consistency of data, The warehouse data has been replicated the availability and the enhancement of security in the services. This technology originated from internet sector as a decentralized, distributed ledger for data transaction. Nowadays, it is visualised as a backbone or frame work for decentralized data processing in open source network. Blockchain uses variety of consensus protocol which is reliable for nodes and communication resources that is used for data consistency. Byzantine fault tolerance algorithm has been proposed for computational cost and security also for consensus efficiency. This paper deals by proposing practical byzantine fault tolerance on edge computing networks paves away for reducing storage overhead also security purpose on edge devices. The proposed model is simulated in the constrain environment and the results are discussed. It shows that the proposed method has increase the availability and security of the stored data.


Sign in / Sign up

Export Citation Format

Share Document