Effect of Lubricant Viscosity on the Friction Behavior of the mm-scale Specimen

Author(s):  
Jian Wu ◽  
Knut Sørby
2010 ◽  
Vol 38 (3) ◽  
pp. 182-193 ◽  
Author(s):  
Gary E. McKay

Abstract When evaluating aircraft brake control system performance, it is difficult to overstate the importance of understanding dynamic tire forces—especially those related to tire friction behavior. As important as they are, however, these dynamic tire forces cannot be easily or reliably measured. To fill this need, an analytical approach has been developed to determine instantaneous tire forces during aircraft landing, braking and taxi operations. The approach involves using aircraft instrumentation data to determine forces (other than tire forces), moments, and accelerations acting on the aircraft. Inserting these values into the aircraft’s six degree-of-freedom equations-of-motion allows solution for the tire forces. While there are significant challenges associated with this approach, results to date have exceeded expectations in terms of fidelity, consistency, and data scatter. The results show excellent correlation to tests conducted in a tire test laboratory. And, while the results generally follow accepted tire friction theories, there are noteworthy differences.


2013 ◽  
Vol 9 (6) ◽  
pp. 766-772 ◽  
Author(s):  
C. Sabarinathan ◽  
Md. Ali ◽  
S. Muthu

2021 ◽  
Vol 69 (4) ◽  
Author(s):  
Michael Chandross ◽  
Nicolas Argibay

AbstractThe friction behavior of metals is directly linked to the mechanisms that accommodate deformation. We examine the links between mechanisms of strengthening, deformation, and the wide range of friction behaviors that are exhibited by shearing metal interfaces. Specifically, the focus is on understanding the shear strength of nanocrystalline and nanostructured metals, and conditions that lead to low friction coefficients. Grain boundary sliding and the breakdown of Hall–Petch strengthening at the shearing interface are found to generally and predictably explain the low friction of these materials. While the following is meant to serve as a general discussion of the strength of metals in the context of tribological applications, one important conclusion is that tribological research methods also provide opportunities for probing the fundamental properties and deformation mechanisms of metals.


2021 ◽  
pp. 146808742199698
Author(s):  
Lyu Xiuyi ◽  
Abdullah Azam ◽  
Wang Yuechang ◽  
Lu Xiqun ◽  
Li Tongyang ◽  
...  

The piston ring-cylinder liner (PRCL) is one of the most important parts of marine diesel engines and contributes 25% to 50% of total friction loss. The lubrication simulation analysis of the PRCL system is a challenging task. Complete understanding and precise prediction of lubrication loads is a key to understanding the friction behavior of PRCL systems as the accuracy of the friction prediction depends upon precise prediction of lubrication loads. Therefore, this paper focuses on the gas pressure calculation which is the primary source of lubrication loads. The procedure presented combines the advantages of two mainstream methods to predict loads in the PRCL system. The result is a significant reduction in the computation time without compromising on accuracy. Firstly, a comparison of both approaches is presented which suggests that each technique has its limitations (one is time-bound, and one is accuracy-bound). Then, the results from both calculation methods are verified against literature and a parametric study is performed to identify the key structural parameters of PRCL system that affect the calculation efficiency. Finally, a correlation coefficient is introduced into the analysis to combine the two approaches which then identifies the conditions under which the use of the faster method becomes invalid and replaces it with the more accurate approach. This ensures optimum performance of the calculation procedure by switching between the fast and the accurate method depending upon the accuracy requirement under given conditions, thereby, simplifying the dynamic and lubrication model of PRCL systems. The study has direct implications for the tribological design of the PRCL interface.


Friction ◽  
2020 ◽  
Author(s):  
Rongxin Chen ◽  
Jiaxin Ye ◽  
Wei Zhang ◽  
Jiang Wei ◽  
Yan Zhang ◽  
...  

Abstract The tribological characteristics of cotton fibers play an important role in engineering and materials science, and real contact behavior is a significant aspect in the friction behavior of cotton fibers. In this study, the tribological characteristics of cotton fibers and their relationship with the real contact behavior are investigated through reciprocating linear tribotesting and real contact analysis. Results show that the friction coefficient decreases with a general increase in load or velocity, and the load and velocity exhibit a co-influence on the friction coefficient. The dynamic change in the real contact area is recorded clearly during the experiments and corresponds to the fluctuations observed in the friction coefficient. Moreover, the friction coefficient is positively correlated with the real contact area based on a quantitative analysis of the evolution of friction behavior and the real contact area at different loads and velocities. This correlation is evident at low velocities and medium load.


Coatings ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 56
Author(s):  
Ashutosh Sharma ◽  
Byungmin Ahn

Metallic and alloyed coatings are used widely in several decorative and technology-based applications. In this work, we selected Sn coatings plated on Cu substrates for joining applications. We employed two different plating baths for the fabrication of Sn and Ni coatings: acidic stannous sulfate for Sn and Watts bath for Ni layer. The plating current densities were varied from 100–500 mA/cm2. Further, the wear and friction behavior of the coatings were studied using a ball-on-disc apparatus under dry sliding conditions. The impact of current density was studied on the morphology, wear, and coefficient of friction (COF) of the resultant coatings. The wear experiments were done at various loads from 2–10 N. The sliding distance was fixed to 7 m. The wear loss was quantified in terms of the volume of the track geometry (width and depth of the tracks). The results indicate that current density has an important role in tailoring the composition and morphology of coatings, which affects the wear properties. At higher loads (8–10 N), Sn coatings on Ni/Cu had higher volume loss with a stable COF due to a mixed adhesive and oxidative type of wear mechanism.


2021 ◽  
Vol 238 ◽  
pp. 112211
Author(s):  
Jin Xia ◽  
Kuang-yi Shan ◽  
Xiao-hui Wu ◽  
Run-li Gan ◽  
Wei-liang Jin

Sign in / Sign up

Export Citation Format

Share Document