Uptake of phosphorus and potassium in relation to root growth and root density

1973 ◽  
Vol 38 (1) ◽  
pp. 49-69 ◽  
Author(s):  
E. I. Newman ◽  
Rosalie E. Andrews
Weed Science ◽  
2013 ◽  
Vol 61 (2) ◽  
pp. 319-327 ◽  
Author(s):  
Deborah Britschgi ◽  
Peter Stamp ◽  
Juan M. Herrera

Competition between crops and weeds may be stronger at the root than at the shoot level, but belowground competition remains poorly understood, due to the lack of suitable methods for root discrimination. Using a transgenic maize line expressing green fluorescent protein (GFP), we nondestructively discriminated maize roots from weed roots. Interactions between GFP-expressing maize, common lambsquarters, and redroot pigweed were studied in two different experiments with plants arranged in rows at a higher plant density (using boxes with a surface area of 0.09 m2) and in single-plant arrangements (using boxes with a surface area of 0.48 m2). Root density was screened using minirhizotrons. Relative to maize that was grown alone, maize root density was reduced from 41 to 87% when it was grown with redroot pigweed and from 27 to 73% when it was grown with common lambsquarters compared to maize grown alone. The calculated root : shoot ratios as well as the results of shoot dry weight and root density showed that both weed species restricted root growth more than they restricted shoot growth of maize. The effect of maize on the root density of the weeds ranged from a reduction of 25% to an increase of 23% for common lambsquarters and a reduction of 42 to 6% for redroot pigweed. This study constitutes the first direct quantification of root growth and distribution of maize growing together with weeds. Here we demonstrate that the innovative use of transgenic GFP-expressing maize combined with the minirhizotron technique offers new insights on the nature of the response of major crops to belowground competition with weeds.


2019 ◽  
Vol 65 (3) ◽  
pp. 214-223 ◽  
Author(s):  
Juan Li ◽  
Bufan Zheng ◽  
Ruiwen Hu ◽  
Yongjun Liu ◽  
Yongfeng Jing ◽  
...  

Endophytic bacteria are generally helpful for plant growth and protection. We isolated from tobacco seeds three Pseudomonas strains (K03, Y04, and N05) that could produce siderophores, indole-3-acetic acid, and 1-aminocyclopropane-1-carboxylate deaminase, fix nitrogen, dissolve phosphorus and potassium, and tolerate heavy metals. In pot experiments, the three isolated strains significantly promoted root growth and increased the root enzyme activity in Nicotiana tobacum K326. Furthermore, bacterial inoculations increased the proportion of residual lead (Pb) by 8.36%–51.63% and decreased the total Pb content by 3.28%–6.38% in the contaminated soil during tobacco planting, compared with uninoculated soils. An effective decrease in Pb content was also found in tobacco leaves with bacterial inoculations. K03 inoculation decreased the Pb content in the upper leaves by 49.80%, and Y04 inoculation had the best effect, decreasing the Pb content in the middle leaves by 70.12%. Additionally, soil pH and root activity had significant effects on transformation and translocation of Pb. The study suggested that in response to Pb pollution in soil, a reasonable application of endophytes (e.g., Pseudomonas) might be a promising approach in promoting tobacco growth and reducing Pb content in tobacco, while simultaneously enhancing Pb stabilization in soils.


2020 ◽  
Vol 18 (9) ◽  
pp. 1955-1968 ◽  
Author(s):  
Dante F. Placido ◽  
Jaspreet Sandhu ◽  
Shirley J. Sato ◽  
Natalya Nersesian ◽  
Truyen Quach ◽  
...  

1976 ◽  
Vol 27 (2) ◽  
pp. 183 ◽  
Author(s):  
D Tennant

Wheat root growth was followed to 30 days from planting in wheat supplied with standard, twofold, half and nil levels of nitrogen, phosphorus and potassium. Root numbers and lengths followed consistent patterns of increase in the seminal and nodal root systems of all treatments. Most root components demonstrated their highest rates of relative increase in length and number immediately after first appearance. Within a few days this decreased to a constant rate of increase which continued until the end of the experiment. Rates during the stages of constant relative increase were higher with increasing order of lateral, and the same for all treatments, except when nutrient deficiency seriously suppressed root growth. Potassium deficiency stopped root growth completely within 10–12 days of planting. Nitrogen and phosphorus deficiencies gave increasing delays in root component appearance with increasing order of lateral. Increasing suppression of seminal lateral numbers and a severe suppression of nodal root growth followed. Lower root numbers caused by nitrogen deficiency were compensated by greater lateral lengths in the seminal but not the nodal root systems. Some reduction in root growth resulted from application of the half and twofold levels of nitrogen, phosphorus and potassium. All responses to applied nutrient levels were more obvious with increasing order of lateral and with the nodal rather than seminal root systems. The nodal root system reflected plant response better than the seminal root system.


1986 ◽  
Vol 10 (3) ◽  
pp. 217-230 ◽  
Author(s):  
SA Barber ◽  
AD Mackay

2016 ◽  
Vol 67 (5) ◽  
pp. 495 ◽  
Author(s):  
Qian Xiao ◽  
Li-Xia Zhu ◽  
Hong-Pei Zhang ◽  
Xiu-Yun Li ◽  
Yu-Fang Shen ◽  
...  

Biochar has been widely proposed as a relatively novel approach to improve soil quality and increase crop productivity, but its underlying mechanisms are not well understood. A large root system in plants is either a constitutive or an inducible trait dependent on the uptake of resources and the production of shoot dry matter. Here a field experiment was conducted to investigate the effects of biochar amendment on the dynamic growth and development of maize (Zea mays L.), both above- and belowground, and to explore the relationship between soil condition, root traits and shoot biomass over two growing seasons on the Loess Plateau in northern China. Biochar was added to a maize field at rates of 0, 10, 20 and 30 t ha–1 without mulching and at rates of 0 and 20 t ha–1 with film mulching before sowing the first crop. The application of straw biochar with 30 t ha–1 decreased soil bulk density by 12% and increased soil total porosity by 13% in the 0–10-cm soil layer 6 months after biochar addition. Biochar amendment increased soil organic carbon, total soil nitrogen, carbon : nitrogen ratio, and available phosphorus and potassium at the end of each growing season. Although, root growth was inhibited at a rate of 30 t ha–1 in the early stage of the first year, biochar amendment exhibited a positive effect in other stages, resulting in higher root weight density, root length density and root surface-area density. These responses led to higher growth rates, maize biomass, grain yields and uptake of nitrogen, phosphorus and potassium as the rate of biochar addition increased. Film mulching with biochar amendment achieved the greatest root and shoot biomass and grain yield in both crops, despite differences in climate conditions. Biochar aged in the field for 2 years had the same effect on soil properties and crop production, suggesting that the application of straw biochar may be a promising option for increasing productivity in semi-arid farmland.


2019 ◽  
Vol 45 (6) ◽  
Author(s):  
Angela Hewitt ◽  
Frank Balestri ◽  
Marvin Lo ◽  
Gary Watson

Loam-over-compacted-clay and loam soil profiles were created in 10 cm × 10 cm × 25 cm containers. Containers were placed in trays of water to simulate poor subsoil drainage in the landscape. Four urban tolerant species, Acer negundo, Catalpa speciosa, Gleditsia triacanthos, Ulmus americana, and two less tolerant species, Quercus rubra and Acer saccharum, were direct seeded in the containers. Soil volumetric water content and oxygen diffusion rate were monitored. At the conclusion of the study, length of fine roots (< 2 mm diameter) was measured throughout the soil profile. Oxygen decreased and moisture increased with soil depth. Fine root density of all species decreased with depth except Ulmus Americana. Catalpa speciose was the only species showing a difference in root growth between soil types throughout the profile and had up to seven times the root density of other species at the surface and up to four times at the bottom. Root growth of most species seemed to be reduced more by high soil moisture and reduced aeration than soil texture and compaction.


Agriculture ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1210
Author(s):  
Qinghua Ma ◽  
Xinghong Wang ◽  
Weijie Yuan ◽  
Hongliang Tang ◽  
Mingbao Luan

Monopotassium phosphate is a widely used phosphorus and potassium fertiliser for ornamental plants, but it is not known what concentration will result in optimal flower production, root growth and nutrient uptake of rose plants. We compared potted rose plants fertilised with six different concentrations (0.0 as a water-only control, 1.0, 2.0, 3.0, 4.0 and 5.0 g·L−1) of an aqueous monopotassium phosphate solution as a combination of foliar and soil applications over two consecutive flowering cycles. Rose growth, flower production and nutrient accumulation responded differently to fertilisation with different concentrations of monopotassium phosphate. During the first flowering cycle, shoot and root dry weight, leaf chlorophyll content, flower diameter, total root length and surface area, and total fine root length significantly increased in response to increased monopotassium phosphate concentrations from 0.0 to 3.0 g·L−1 but decreased in response to fertilisation with 4.0 or 5.0 g·L−1 monopotassium phosphate. Similar trends were observed in shoot dry weight, leaf chlorophyll content, flower diameter and number, phosphorus and potassium accumulation during the second flowering cycle. According to quadratic equations derived from both flowering cycles, the optimal concentration of monopotassium phosphate, based on flower diameter and dry weight, as well as total phosphorus and potassium accumulation, was 2.6–3.0 g·L−1. Furthermore, total root length was significantly correlated with flower diameter, flower dry weight, and total phosphorus and potassium accumulation (p < 0.05). These results indicated that fertilisation with optimal concentrations of monopotassium phosphate can increase rose growth, flower productivity and nutrient uptake through enhanced root growth.


Sign in / Sign up

Export Citation Format

Share Document