Soil amendment with biochar increases maize yields in a semi-arid region by improving soil quality and root growth

2016 ◽  
Vol 67 (5) ◽  
pp. 495 ◽  
Author(s):  
Qian Xiao ◽  
Li-Xia Zhu ◽  
Hong-Pei Zhang ◽  
Xiu-Yun Li ◽  
Yu-Fang Shen ◽  
...  

Biochar has been widely proposed as a relatively novel approach to improve soil quality and increase crop productivity, but its underlying mechanisms are not well understood. A large root system in plants is either a constitutive or an inducible trait dependent on the uptake of resources and the production of shoot dry matter. Here a field experiment was conducted to investigate the effects of biochar amendment on the dynamic growth and development of maize (Zea mays L.), both above- and belowground, and to explore the relationship between soil condition, root traits and shoot biomass over two growing seasons on the Loess Plateau in northern China. Biochar was added to a maize field at rates of 0, 10, 20 and 30 t ha–1 without mulching and at rates of 0 and 20 t ha–1 with film mulching before sowing the first crop. The application of straw biochar with 30 t ha–1 decreased soil bulk density by 12% and increased soil total porosity by 13% in the 0–10-cm soil layer 6 months after biochar addition. Biochar amendment increased soil organic carbon, total soil nitrogen, carbon : nitrogen ratio, and available phosphorus and potassium at the end of each growing season. Although, root growth was inhibited at a rate of 30 t ha–1 in the early stage of the first year, biochar amendment exhibited a positive effect in other stages, resulting in higher root weight density, root length density and root surface-area density. These responses led to higher growth rates, maize biomass, grain yields and uptake of nitrogen, phosphorus and potassium as the rate of biochar addition increased. Film mulching with biochar amendment achieved the greatest root and shoot biomass and grain yield in both crops, despite differences in climate conditions. Biochar aged in the field for 2 years had the same effect on soil properties and crop production, suggesting that the application of straw biochar may be a promising option for increasing productivity in semi-arid farmland.

2013 ◽  
Vol 50 (3) ◽  
pp. 321-342 ◽  
Author(s):  
NISHANT K. SINHA ◽  
USHA KIRAN CHOPRA ◽  
ANIL KUMAR SINGH

SUMMARYSoil quality integrates the effects of soil physical, chemical and biological attributes. Some of them are dynamic in nature and behave differentially in various agro-ecosystems (AESs) and are quantified in terms of a soil quality index (SQI). An attempt has been made in this paper to develop an SQI based on a minimum data set (MDS), which could be used to evaluate the sustainability of the crop production in three varying AESs in India, namely sub-humid, semi-arid and arid. Thirteen indicators were utilized to develop the SQI from the properties measured from the surface soil layer (0–15 cm). Each indicator of the MDS was transformed into a dimensionless score based on scoring functions (linear and non-linear) and integrated into four SQIs. The weighted non-linear index (WNLI) was identified as the most sensitive for all the AESs and was recommended as an index for future assessments. Based on this index, the quantification of soil quality under several cropping systems was carried out for sub-humid, semi-arid and arid AESs and the most suitable cropping system was identified. WLNI was positively and significantly correlated (R2= 0.79,p< 0.01) with wheat equivalent yield for all the cropping systems. This clearly indicated that the index may be used satisfactorily for quantifying soil quality.


1989 ◽  
Vol 69 (3) ◽  
pp. 991-999 ◽  
Author(s):  
S. D. SINGH ◽  
Y. V. SINGH ◽  
R. C. BHANDARI

With drip irrigation systems, a part of the area is wetted at the soil surface. This raises the question of whether to program fertilizer rates on the total or wetted area of the plot. The objective of this investigation was to study the response of unstaked tomato plants (Lycopersicon lycopersicum L. Karst.) to drip application of fertilizers on the basis of total versus wetted surface area. Apart from the conventional broadcast and drip application of NPK fertilizers in liquid form, four other treatments were applied consisting of two rates of NPK, i.e., 224, 88 and 168 kg ha−1 on total plot area basis, and 56, 22 and 42 kg ha−1 on wetted surface area basis, factorially combined with 1.2- and-2.4-m lateral spacings, with N through drip, P and K banded. The study also included drip irrigation at 1.0 and 0.5 times the daily evapotranspiration (ET) rate factorially combined with drip application of NPK at 1.0, 0.75 and 0.5 times and broadcast application at 1.0 times the NPK rate. The NPK were, respectively, at 224, 88 and 168 kg ha−1. At the full grown stage, available water in the plant root zone was 60–100%. Root growth, soil temperature, and thermal conductivity were positively influenced by canopy cover and soil moisture regime. The development pattern indicated that 74% of the total root weight was confined to the top 15-cm soil layer. At the time of fruiting, the root weight declined in the soil layer with high water content. Drip irrigation equal to 0.5 ET required 25% less fertilizer than irrigation equal to ET, but irrigation at the latter rate and application of fertilizers to supply 224, 88 and 168 kg ha−1 of NPK, respectively, gave the highest yield of 90 t ha−1.Key words: Drip irrigation, root growth, spacing, multiple rows, fertilizer


1986 ◽  
Vol 10 (1) ◽  
pp. 24-27 ◽  
Author(s):  
Peter P. Feret ◽  
Richard E. Kreh

Abstract Loblolly pine seedlings undercut using five different treatments extending from July to September exhibited significant alteration of shoot and root biomass. Root growth potential (RGP) (measured by number of new elongating roots) was not significantly altered by undercutting. Undercutting did significantly alter the RGP/root weight ratio and the RGP/shoot weight ratio because of both concomitant changes in root and shoot biomass and changes in seedling physiology. Root growth potential and efficiency of existing old roots to produce new roots were not well correlated with seedling size.


2011 ◽  
Vol 62 (9) ◽  
pp. 803 ◽  
Author(s):  
R. C. Hayes ◽  
B. J. Scott ◽  
B. S. Dear ◽  
G. D. Li ◽  
G. C. Auricht

This study tested the hypothesis that lucerne (Medicago sativa L.) populations selected in solution culture high in aluminium (Al) would increase seedling root growth when grown in an acid soil high in exchangeable Al. Root growth of six elite populations (Aurora C2, UQL-1 C2, T02-011 C1, T02-011 C2, A513 C3 and Sardi 7 C2) selected in high-Al solution culture (SHASC) was compared with that of corresponding parent as well as the Georgia acid soil-tolerant populations in an acid soil in pots grown for 8 days under controlled environmental conditions. Lime was added to the soil to provide contrasts in the severity of stress imposed by low pH and high Al. Averaged across six SHASC populations, total root length increased 19% at pH 4.34 in CaCl2 (35% exchangeable Al) and 26% at pH 5.26 (<1% exchangeable Al) compared with the control populations. At all pH levels SHASC populations showed increased tap root length, total root length (includes lateral roots), root weight and root surface area, but decreased average root diameter compared with the six control populations. A large amount of variability was observed both between and within lucerne populations with three SHASC populations (Aurora C2, UQL-1 C2 and Sardi 7 C2) exhibiting increased root growth at lower pH levels, but little increase in root length at higher pH, consistent with increased tolerance to Al toxicity. This was in contrast to three other SHASC populations (T02-011 C1, T02-011 C2 and A513 C3), which exhibited increased root length at all pH levels, consistent with increased seedling vigour. The Sardi 7 C2 population exhibited the greatest increase in tap root growth with tap root length increasing by 40 and 30% at pH 4.34 and 4.48, respectively, compared with its parent population Sardi 7. This study provides evidence that seedlings of lucerne populations selected in high-Al solution culture can confer significantly improved root and shoot growth in acid soil. It is recommended that such screening be incorporated into lucerne breeding programs to reduce costs in space and time.


2021 ◽  
Vol 13 (3) ◽  
pp. 1398
Author(s):  
Tavjot Kaur ◽  
Simerpreet Kaur Sehgal ◽  
Satnam Singh ◽  
Sandeep Sharma ◽  
Salwinder Singh Dhaliwal ◽  
...  

The present study was conducted to investigate the seasonal effects of five land use systems (LUSs), i.e., wheat–rice (Triticum aestivum—Oryza sativa) system, sugarcane (Saccharum officinarum), orange (Citrus sinensis) orchard, safeda (Eucalyptus globules) forest, and grassland, on soil quality and nutrient status in the lower Satluj basin of the Shiwalik foothills Himalaya, India. Samples were analyzed for assessment of physico-chemical properties at four soil depths, viz., 0–15, 15–30, 30–45, and 45–60 cm. A total of 120 soil samples were collected in both the seasons. Soil texture was found to be sandy loam and slightly alkaline in nature. The relative trend of soil organic carbon (SOC), macro- and micro-nutrient content for the five LUSs was forest > orchard > grassland > wheat–rice > sugarcane, in the pre- and post-monsoon seasons. SOC was highly correlated with macronutrients and micronutrients, whereas SOC was negatively correlated with soil pH (r = −0.818). The surface soil layer (0–15 cm) had a significantly higher content of SOC, and macro- and micro-nutrients compared to the sub-surface soil layers, due to the presence of more organic content in the soil surface layer. Tukey’s multiple comparison test was applied to assess significant difference (p < 0.05) among the five LUSs at four soil depths in both the seasons. Principle component analysis (PCA) identified that SOC and electrical conductivity (EC) were the most contributing soil indicators among the different land use systems, and that the post-monsoon season had better soil quality compared to the pre-monsoon season. These indicators helped in the assessment of soil health and fertility, and to monitor degraded agroecosystems for future soil conservation.


Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 708
Author(s):  
Phanthasin Khanthavong ◽  
Shin Yabuta ◽  
Hidetoshi Asai ◽  
Md. Amzad Hossain ◽  
Isao Akagi ◽  
...  

Flooding and drought are major causes of reductions in crop productivity. Root distribution indicates crop adaptation to water stress. Therefore, we aimed to identify crop roots response based on root distribution under various soil conditions. The root distribution of four crops—maize, millet, sorghum, and rice—was evaluated under continuous soil waterlogging (CSW), moderate soil moisture (MSM), and gradual soil drying (GSD) conditions. Roots extended largely to the shallow soil layer in CSW and grew longer to the deeper soil layer in GSD in maize and sorghum. GSD tended to promote the root and shoot biomass across soil moisture status regardless of the crop species. The change of specific root density in rice and millet was small compared with maize and sorghum between different soil moisture statuses. Crop response in shoot and root biomass to various soil moisture status was highest in maize and lowest in rice among the tested crops as per the regression coefficient. Thus, we describe different root distributions associated with crop plasticity, which signify root spread changes, depending on soil water conditions in different crop genotypes as well as root distributions that vary depending on crop adaptation from anaerobic to aerobic conditions.


2021 ◽  
Vol 22 (10) ◽  
pp. 5162
Author(s):  
Leangsrun Chea ◽  
Birgit Pfeiffer ◽  
Dominik Schneider ◽  
Rolf Daniel ◽  
Elke Pawelzik ◽  
...  

Low phosphorus (P) availability is a major limiting factor for potatoes. P fertilizer is applied to enhance P availability; however, it may become toxic when plants accumulate at high concentrations. Therefore, it is necessary to gain more knowledge of the morphological and biochemical processes associated with P deficiency and toxicity for potatoes, as well as to explore an alternative approach to ameliorate the P deficiency condition. A comprehensive study was conducted (I) to assess plant morphology, mineral allocation, and metabolites of potatoes in response to P deficiency and toxicity; and (II) to evaluate the potency of plant growth-promoting rhizobacteria (PGPR) in improving plant biomass, P uptake, and metabolites at low P levels. The results revealed a reduction in plant height and biomass 60–80% under P deficiency compared to P optimum. P deficiency and toxicity conditions also altered the mineral concentration and allocation in plants due to nutrient imbalance. The stress induced by both P deficiency and toxicity was evident from an accumulation of proline and total free amino acids in young leaves and roots. Furthermore, root metabolite profiling revealed that P deficiency reduced sugars by 50–80% and organic acids by 20–90%, but increased amino acids by 1.5–14.8 times. However, the effect of P toxicity on metabolic changes in roots was less pronounced. Under P deficiency, PGPR significantly improved the root and shoot biomass, total root length, and root surface area by 32–45%. This finding suggests the potency of PGPR inoculation to increase potato plant tolerance under P deficiency.


2012 ◽  
Vol 5 ◽  
pp. ASWR.S9410 ◽  
Author(s):  
Rewati Niraula ◽  
Laura M. Norman ◽  
Thomas Meixner ◽  
James B. Callegary

In most watershed-modeling studies, flow is calibrated at one monitoring site, usually at the watershed outlet. Like many arid and semi-arid watersheds, the main reach of the Santa Cruz watershed, located on the Arizona-Mexico border, is discontinuous for most of the year except during large flood events, and therefore the flow characteristics at the outlet do not represent the entire watershed. Calibration is required at multiple locations along the Santa Cruz River to improve model reliability. The objective of this study was to best portray surface water flow in this semi-arid watershed and evaluate the effect of multi-gauge calibration on flow predictions. In this study, the Soil and Water Assessment Tool (SWAT) was calibrated at seven monitoring stations, which improved model performance and increased the reliability of flow predictions, in the Santa Cruz watershed. The most sensitive parameters to affect flow were found to be curve number (CN2), soil evaporation and compensation coefficient (ESCO), threshold water depth in shallow aquifer for return flow to occur (GWQMN), base flow alpha factor (ALPHA_BF), and effective hydraulic conductivity of the soil layer (CH_K2). In comparison, when the model was established with a single calibration at the watershed outlet, flow predictions at other monitoring gauges were inaccurate. This study emphasizes the importance of multi-gauge calibration to develop a reliable watershed model in arid and semi-arid environments. The developed model, with further calibration of water quality parameters will be an integral part of the Santa Cruz Watershed Ecosystem portfolio Model (SCWEPM), an online decision support tool, to assess the impacts of climate change and urban growth in the Santa Cruz watershed.


Sign in / Sign up

Export Citation Format

Share Document