Below-ground organic carbon and decomposition potential in a field-forest glacial-outwash landscape

1996 ◽  
Vol 23 (2) ◽  
pp. 207-214 ◽  
Author(s):  
P. S. Homann ◽  
D. F. Grigal
2018 ◽  
Vol 7 (1) ◽  
pp. 1 ◽  
Author(s):  
Suryono Suryono ◽  
Nirwani Soenardjo ◽  
Edi Wibowo ◽  
Raden Ario ◽  
Edi Fahrur Rozy

Ekosistem mangrove memiliki fungsi ekologis sebagai penyerap dan penyimpan karbon. Mangrove menyerap CO2 pada saat proses fotosintesis, kemudian mengubahnya menjadi karbohidrat dengan menyimpannya dalam bentuk biomassa pada akar ,pohon, serta daun. Tujuan dari penelitian ini adalah untuk mengetahui total above ground biomass, belowground biomass, simpanan karbon atas, simpanan karbon bawah, dan karbon organik pada sedimen dasar  di Hutan Mangrove Perancak, Jembrana, Bali. Sampling dilakukan dengan  metode purposive sampling dengan dasar pertimbangan berupa jenis, kerapatan serta diameter pohon mangrove. Estimasi biomassa digunakan  metode tanpa pemanenan dengan mengukur diameter at breast height (DBH, 1.3 m) mangrove. Simpanan karbon diestimasi dari 46% biomasa. Kandungan karbon organik pada sedimen diukur dengan  menggunakan metode lost on ignition (LOI). Hasil penelitian menunjukkan total above ground biomass sebesar 187,21 ton/ha, below ground biomass sebesar 125,43 ton/ha, simpanan karbon atas sebesar 86,11 ton/ha, simpanan karbon bawah sebesar 57,69 ton/ha, sedangkan  karbon organik sedimen sebesar 359,24 ton/ha. The mangrove ecosystem has ecological functions as an absorber and carbon storage. Mangrove absorbs CO2 during the process of photosynthesis, then changes it into carbohydrates bystoring it in the form of tree biomass. The aim of this research is to know the total of above ground biomass, below ground biomass, upper carbon storage, lower carbon storage, and sediment organic carbon in Perancak Mangrove Forest, Jembrana, Bali. The selection of sampling location using purposive sampling method with consideration of type, density and diameter of mangrove. The estimatorion of biomass using the method without harvesting by measuring diameter at breast height (DBH, 1.3 m) mangrove. Carbon deposits are estimated from46% of biomass. The organic carbon content of sediment was measured using the lost on ignition (LOI) method. The results showedthat  the total of above ground biomass of 187.21 ton / ha, below ground biomass 125,43 ton / ha, upper carbon store of 86,11 ton / ha, lower carbon store of 57,69 ton / ha, and organic carbon sedimen to 359.24 tons / ha.


2016 ◽  
Vol 36 (23) ◽  
Author(s):  
朱耀军 ZHU Yaojun ◽  
赵峰 ZHAO Feng ◽  
郭菊兰 GUO Julan ◽  
武高洁 WU Gaojie ◽  
林广旋 LIN Guangxuan

2020 ◽  
Author(s):  
Matthias Kuhnert ◽  
Viktoria Oliver ◽  
Andrea Volante ◽  
Stefano Monaco ◽  
Yit Arn Teh ◽  
...  

<p>Rice cultivation has high water consumption and emits large quantities of greenhouse gases. Therefore, rice fields provide great potential to mitigate GHG emissions by modifications to cultivation practices or external inputs. Previous studies showed differences for impacts of alternated wetting and drying (AWD) practices for above-ground and below-ground biomass, which might have long term impacts on soil organic carbon stocks. The objective of this study is to parameterise and evaluate the model ECOSSE for rice simulations based on data from an Italian rice test site where the effects of different water management practices and 12 common European cultivars, on yield and GHG emissions, were investigated. Special focus is on the differences of the impacts on the greenhouse gas emissions for AWD and continuous flooding (CF). The model is calibrated and tested for field measurements and is used for model experiments to explore climate change impacts and long-term effects. Long term carbon storage is of particular interest since it is a suitable mitigation strategy. As experiments showed different impacts of management practices on the below ground biomass, long term model experiments are used to estimate impacts on SOC of the different practices. The measurements also allow an analysis of the impacts of different cultivars and the uncertainty of model approaches using a single data set for calibration.</p>


Soil Research ◽  
2015 ◽  
Vol 53 (4) ◽  
pp. 366 ◽  
Author(s):  
Yongzhong Su ◽  
Jiuqiang Wang ◽  
Rong Yang ◽  
Xiao Yang ◽  
Guiping Fan

Soil texture plays an important role in controlling vegetation production and soil organic carbon (SOC) concentration in arid desert grassland ecosystems. However, little is known about the occurrence and extent of these textural effects in the arid desert grasslands of Northwest China. This study used 160 soil profiles taken from 32 desert grassland sites in similar topographical units (alluvial–diluvial fans) in the middle of Hexi Corridor region of Northwest China to investigate vegetation biomass, SOC storage, and soil texture of seven layers in the top 100 cm of soil. The mean aboveground biomass, below-ground biomass, and total biomass in arid desert grassland were 155.3, 95.3, and 256.3 g m–2, respectively. More than 95% of the below-ground biomass was distributed in the top 30 cm of soil. Spatially, vegetation biomass was positively related to soil clay content and silt + clay content. The mean SOC density in the top 100 cm was 2.94 kg m–2 and ~46.8% of the storage was concentrated in the top 30 cm. SOC concentrations and stocks were positively and significantly related to clay content and silt + clay content in the seven soil layers sampled from the top 100 cm. The soil silt + clay content explained 42–79% of the variation in SOC stocks in the different soil depths. In conclusion, soil texture appears to be an important control on vegetation productivity and SOC capacity in arid Hexi Corridor desert grassland soils.


Our Nature ◽  
2019 ◽  
Vol 17 (1) ◽  
pp. 1-8
Author(s):  
Dil Kumar Limbu ◽  
Madan Koirala ◽  
Zhanhuan Shang

Organic carbon and total nitrogen are important components of global carbon and nitrogen cycle in rangeland ecology.Objective of this study is to identify and quantify the present status of carbon and nitrogen pool in Himalayan rangeland and to make recommendations for enhancing carbon and nitrogen storage for rangeland management. To meet the aforementioned objectives, the field study was conducted in 2011 -2013. The study showed that soil organic carbon was highest in legume seeding sub-plot in top soil (28.53 ± 2.6) t/ha of heavily grazed area. Similarly, total nitrogen was highest in bottom soil (2.81 ± 0.16) t/ha in legume seeding sub-plot of enclosed un-grazed area. Usually, heavily grazed and legume seeding sub-plots had more soil organic carbon and total nitrogen concentration compared to others. The value of above ground biomass was in increasing trend with decreasing grazing intensity but for below ground biomass, it was just the reverse. On the basis of the results of this study, the grazing intensity is positively correlated with above ground and below ground biomass and soil organic carbon but no correlation with soil total nitrogen and soil bulk density.


2020 ◽  
Author(s):  
Sophie Drexler ◽  
Axel Don

<p>The establishment of hedgerows as traditional form of agroforestry in Europe is a promising strategy to promote carbon sinks in the context of climate change mitigation. However, only few studies quantified the potential of hedgerows to sequester and store carbon. We therefore conducted a meta-analysis to gain a quantitative overview about the carbon storage in the above- and below-ground biomass and soils of hedgerows.</p><p>Soil organic carbon (SOC) data of hedgerows and adjacent agricultural fields of nine studies with 83 hedgerow sites was compiled. On average, the establishment of hedgerows on cropland increased SOC by 32%. No significant differences were found between the SOC storage of hedgerows and that of grassland. The literature survey on the biomass carbon stocks of hedgerows resulted in 23 sampled hedgerows, which were supplemented by own biomass data of 49 hedgerows from northern Germany. Biomass stocks increased with time since last coppicing and hedgerow height. The mean (± SD) above-ground biomass carbon stock of the analysed hedgerows was 48 ± 29 Mg C ha<sup>-1</sup>. Below-ground biomass values seemed mostly underestimated, as they were calculated from above-ground biomass via fixed assumed root:shoot ratios not specific for hedgerows. Only one study reported measured root biomass under hedgerows with a root:shoot ratio of 0.94:1 ± 0.084. With this shoot:root ratio an average below-ground biomass carbon stock of 45 ± 28 Mg C ha<sup>-1 </sup>was estimated, but with high uncertainty.</p><p>Thus, the establishment of hedgerows on cropland could lead to a SOC sequestration of 1.0 Mg C ha<sup>-1</sup> year<sup>-1</sup> over a 20-year period. Additionally, up to 9.4 Mg C ha<sup>-1</sup> year<sup>-1</sup> could be sequestered in the hedgerow biomass over a 10 year period. In total, hedgerows store 106 ± 41 Mg C ha<sup>-1</sup> more C than croplands. Our results indicate that organic carbon stored in hedgerows is similar high as in forests. We discuss how the establishment of hedgerows, especially on cropland, can thus be an effective option for C sequestration in agricultural landscapes, meanwhile enhance biodiversity, and soil protection.</p>


2021 ◽  
Author(s):  
Yinli Bi ◽  
Xiao Wang ◽  
Yun Cai ◽  
Peter Christie

Abstract A three-compartment culture system was used to study the mechanism by which the AM fungus Funneliformis mosseae influences host plant growth and soil organic carbon (SOC) content in a coal mining area. A 13CO2 pulse tracing technique traced the allocation of maize photosynthetic C in shoots, roots, AM fungus and soil to detect C accumulation and allocation in mycorrhizal (inoculated with Funneliformis mosseae) and non-mycorrhizal treatments.AM fungal inoculation significantly increased the 13C concentration and content in both above- and below-ground plant parts. Mycorrhizal inoculation significantly enhanced the anti-aging ability by increasing soluble sugars and catalase activity (CAT) in maize leaves while reducing foliar malondialdehyde content (MDA) and leaf temperature to promote plant growth. AM fungi also increased P uptake to promote maize growth. Soil organic carbon (SOC), glomalin, microbial biomass carbon (MBC) and nitrogen (MBN) contents increased significantly after inoculation. A mutually beneficial system was established involving maize, the AM fungus and the microbiome, and the AM fungus became an important regulator of C flux between the above- and below-ground parts of the system. Inoculation with the AM fungus promoted plant growth, C fixation and allocation belowground to enhance soil quality. The positive above-belowground feedback appeared to be established.


2020 ◽  
Vol 148 ◽  
pp. 103509 ◽  
Author(s):  
Yang Wang ◽  
Yingde Xu ◽  
Jiubo Pei ◽  
Ming Li ◽  
Te Shan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document