A neosynthesis of sodium channels is involved in the evolution of the sodium current in isolated adult DUM neurons

1991 ◽  
Vol 419 (6) ◽  
pp. 665-667 ◽  
Author(s):  
F. Tribut ◽  
B. Lapied ◽  
A. Duval ◽  
M. Pelhate
2003 ◽  
Vol 90 (3) ◽  
pp. 1635-1642 ◽  
Author(s):  
Ilya A. Rybak ◽  
Krzysztof Ptak ◽  
Natalia A. Shevtsova ◽  
Donald R. McCrimmon

Rapidly inactivating and persistent sodium currents have been characterized in acutely dissociated neurons from the area of rostroventrolateral medulla that included the pre-Bötzinger Complex. As demonstrated in many studies in vitro, this area can generate endogenous rhythmic bursting activity. Experiments were performed on neonate and young rats (P1-15). Neurons were investigated using the whole cell voltage-clamp technique. Standard activation and inactivation protocols were used to characterize the steady-state and kinetic properties of the rapidly inactivating sodium current. Slow depolarizing ramp protocols were used to characterize the noninactivating sodium current. The “window” component of the rapidly inactivating sodium current was calculated using mathematical modeling. The persistent sodium current was revealed by subtraction of the window current from the total noninactivating sodium current. Our results provide evidence of the presence of persistent sodium currents in neurons of the rat rostroventrolateral medulla and determine voltage-gated characteristics of activation and inactivation of rapidly inactivating and persistent sodium channels in these neurons.


1992 ◽  
Vol 262 (3) ◽  
pp. C724-C730 ◽  
Author(s):  
A. Sculptoreanu ◽  
M. Morton ◽  
C. L. Gartside ◽  
S. D. Hauschka ◽  
W. A. Catterall ◽  
...  

The electrophysiological properties of a cardiac cell line (MCM1) originating from a transgenic mouse were characterized. The dominant current in these cells is a sodium current that is insensitive to concentrations of tetrodotoxin (TTX) up to 100 microM. It activates and inactivates rapidly with half-maximal activation at -40 mV and half-maximal inactivation at -79 mV. This sodium current is reduced by agents that increase intracellular adenosine 3',5'-cyclic monophosphate (cAMP) and activate cAMP-dependent protein kinase including isoproterenol, 8-bromo-cAMP, and isobutylmethylxanthine. The phenylalkylamine desmethoxyverapamil blocks the TTX-insensitive sodium current in MCM1 cells in both tonic and use-dependent fashion. Membrane depolarization enhances this block. It is proposed that the TTX-insensitive sodium current in these cells may be similar in origin to the embryonic type of TTX-insensitive sodium current described in other cardiac and skeletal muscle preparations.


2006 ◽  
Vol 34 (6) ◽  
pp. 1299-1302 ◽  
Author(s):  
T. Scheuer ◽  
W.A. Catterall

Currents through voltage-gated sodium channels drive action potential depolarization in neurons and other excitable cells. Smaller currents through these channels are key components of currents that control neuronal firing and signal integration. Changes in sodium current have profound effects on neuronal firing. Sodium channels are controlled by neuromodulators acting through phosphorylation of the channel by serine/threonine and tyrosine protein kinases. That phosphorylation requires specific molecular interaction of kinases and phosphatases with the channel molecule to form localized signalling complexes. Such localization is required for effective neurotransmitter-mediated regulation of sodium channels by protein kinase A. Analogous molecular complexes between sodium channels, kinases and other signalling molecules are expected to be necessary for specific and localized transmitter-mediated modulation of sodium channels by other protein kinases.


1984 ◽  
Vol 83 (2) ◽  
pp. 133-142 ◽  
Author(s):  
I Llano ◽  
F Bezanilla

Patch pipettes were used to record the current arising from small populations of sodium channels in voltage-clamped cut-open squid axons. The current fluctuations associated with the time-variant sodium conductance were analyzed with nonstationary statistical techniques in order to obtain an estimate for the conductance of a single sodium channel. The results presented support the notion that the open sodium channel in the squid axon has only one value of conductance, 3.5 pS.


2020 ◽  
Author(s):  
Franck Potet ◽  
Defne E. Egecioglu ◽  
Paul W. Burridge ◽  
Alfred L. George

ABSTRACTGS-967 and eleclazine (GS-6615) are novel sodium channel inhibitors exhibiting antiarrhythmic effects in various in vitro and in vivo models. The antiarrhythmic mechanism has been attributed to preferential suppression of late sodium current (INaL). Here, we took advantage of a throughput automated electrophysiology platform (SyncroPatch 768PE) to investigate the molecular pharmacology of GS-967 and eleclazine on peak sodium current (INaP) recorded from human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes. We compared GS-967 and eleclazine to the antiarrhythmic drug lidocaine, the prototype INaL inhibitor ranolazine, and the slow inactivation enhancing drug lacosamide. In human induced pluripotent stem cell-derived cardiomyocytes, GS-967 and eleclazine caused a reduction of INaP in a frequency-dependent manner consistent with use-dependent block (UDB). GS-967 and eleclazine had similar efficacy but evoked more potent UDB of INaP (IC50=0.07 and 0.6 μM, respectively) than ranolazine (7.8 μM), lidocaine (133.5 μM) and lacosamide (158.5 μM). In addition, GS-967 and eleclazine exerted more potent effects on slow inactivation and recovery from inactivation compared to the other sodium channel blocking drugs we tested. The greater UDB potency of GS-967 and eleclazine was attributed to the significantly higher association rates (KON) and moderate unbinding rate (KOFF) of these two compounds with sodium channels. We propose that substantial UDB contributes to the observed antiarrhythmic efficacy of GS-967 and eleclazine.SIGNIFICANCE STATEMENTWe investigated the molecular pharmacology of GS-967 and eleclazine on sodium channels in human induced pluripotent stem cell derived cardiomyocytes using a high throughput automated electrophysiology platform. Sodium channel inhibition by GS-967 and eleclazine has unique features including accelerating the onset of slow inactivation and impairing recovery from inactivation. These effects combined with rapid binding and moderate unbinding kinetics explain potent use-dependent block, which we propose contributes to their observed antiarrhythmic efficacy.


1996 ◽  
Vol 271 (14) ◽  
pp. 8034-8045 ◽  
Author(s):  
Dalia Gordon ◽  
Marie-France Martin-Eauclaire ◽  
Sandrine Cestèle ◽  
Charles Kopeyan ◽  
Edmond Carlier ◽  
...  

2004 ◽  
Vol 92 (2) ◽  
pp. 726-733 ◽  
Author(s):  
Michael Tri H. Do ◽  
Bruce P. Bean

In some central neurons, including cerebellar Purkinje neurons and subthalamic nucleus (STN) neurons, TTX-sensitive sodium channels show unusual gating behavior whereby some channels open transiently during recovery from inactivation. This “resurgent” sodium current is effectively activated immediately after action potential-like waveforms. Earlier work using Purkinje neurons suggested that the great majority of resurgent current originates from Nav1.6 sodium channels. Here we used a mouse mutant lacking Nav1.6 to explore the contribution of these channels to resurgent, transient, and persistent components of TTX-sensitive sodium current in STN neurons. The resurgent current of STN neurons from Nav1.6−/− mice was reduced by 63% relative to wild-type littermates, a less dramatic reduction than that observed in Purkinje neurons recorded under identical conditions. The transient and persistent currents of Nav1.6−/− STN neurons were reduced by ∼40 and 55%, respectively. The resurgent current present in Nav1.6−/− null STN neurons was similar in voltage dependence to that in wild-type STN and Purkinje neurons, differing only in having somewhat slower decay kinetics. These results show that sodium channels other than Nav1.6 can make resurgent sodium current much like that from Nav1.6 channels.


Processes ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 680 ◽  
Author(s):  
Woojin Kim

Oxaliplatin is a chemotherapeutic drug widely used to treat various types of tumors. However, it can induce a serious peripheral neuropathy characterized by cold and mechanical allodynia that can even disrupt the treatment schedule. Since the approval of the agent, many laboratories, including ours, have focused their research on finding a drug or method to decrease this side effect. However, to date no drug that can effectively reduce the pain without causing any adverse events has been developed, and the mechanism of the action of oxaliplatin is not clearly understood. On the dorsal root ganglia (DRG) sensory neurons, oxaliplatin is reported to modify their functions, such as the propagation of the action potential and induction of neuropathic pain. Voltage-gated sodium channels in the DRG neurons are important, as they play a major role in the excitability of the cell by initiating the action potential. Thus, in this small review, eight studies that investigated the effect of oxaliplatin on sodium channels of peripheral neurons have been included. Its effects on the duration of the action potential, peak of the sodium current, voltage–response relationship, inactivation current, and sensitivity to tetrodotoxin (TTX) are discussed.


Sign in / Sign up

Export Citation Format

Share Document