Intramolecular interactions in the excited state of vinyl aryl ethers with donor and acceptor substituents in the benzene ring

1982 ◽  
Vol 18 (1) ◽  
pp. 34-45
Author(s):  
G. V. Ratovskii ◽  
T. I. Rozova ◽  
P. I. Grebneva ◽  
A. V. Kalabina

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Tao Wang ◽  
Zhubin Hu ◽  
Xiancheng Nie ◽  
Linkun Huang ◽  
Miao Hui ◽  
...  

AbstractAggregation-induced emission (AIE) has proven to be a viable strategy to achieve highly efficient room temperature phosphorescence (RTP) in bulk by restricting molecular motions. Here, we show that by utilizing triphenylamine (TPA) as an electronic donor that connects to an acceptor via an sp3 linker, six TPA-based AIE-active RTP luminophores were obtained. Distinct dual phosphorescence bands emitting from largely localized donor and acceptor triplet emitting states could be recorded at lowered temperatures; at room temperature, only a merged RTP band is present. Theoretical investigations reveal that the two temperature-dependent phosphorescence bands both originate from local/global minima from the lowest triplet excited state (T1). The reported molecular construct serves as an intermediary case between a fully conjugated donor-acceptor system and a donor/acceptor binary mix, which may provide important clues on the design and control of high-freedom molecular systems with complex excited-state dynamics.



Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3401
Author(s):  
Tsai I-Ting ◽  
M. Merced Montero-Campillo ◽  
Ibon Alkorta ◽  
José Elguero ◽  
Manuel Yáñez

Intramolecular interactions are shown to be key for favoring a given structure in systems with a variety of conformers. In ortho-substituted benzene derivatives including a beryllium moiety, beryllium bonds provide very large stabilizations with respect to non-bound conformers and enthalpy differences above one hundred kJ·mol−1 are found in the most favorable cases, especially if the newly formed rings are five or six-membered heterocycles. These values are in general significantly larger than hydrogen bonds in 1,2-dihidroxybenzene. Conformers stabilized by a beryllium bond exhibit the typical features of this non-covalent interaction, such as the presence of a bond critical point according to the topology of the electron density, positive Laplacian values, significant geometrical distortions and strong interaction energies between the donor and acceptor quantified by using the Natural Bond Orbital approach. An isodesmic reaction scheme is used as a tool to measure the strength of the beryllium bond in these systems in terms of isodesmic energies (analogous to binding energies), interaction energies and deformation energies. This approach shows that a huge amount of energy is spent on deforming the donor–acceptor pairs to form the new rings.



Author(s):  
Li Zhao ◽  
Haixia Zheng ◽  
Kaiyun Zhan ◽  
Yahui Guo ◽  
Bing Liu ◽  
...  


2012 ◽  
Vol 610-613 ◽  
pp. 3574-3579
Author(s):  
Cui Hua Wang ◽  
Sheng Long Yang ◽  
Chao Lu ◽  
Hong Xia Yu ◽  
Lian Shen Wang ◽  
...  

By using CoMFA and CoMSIA methods, the new quantitative structures of 25 aromatic hydrocarbons and the 96 hr-EC50 data with C. vulgaris have been investigated to obtain more detailed insight into the relationships between molecular structure and bioactivity. Compared to CoMFA (the average Q2LOO option =0.610), CoMSIA (the average Q2LOO =0.736) has the better results with robustness and stability. CoMSIA analysis using steric, electrostatic, hydrophobic, and H-bond donor and acceptor descriptors show H-bond donor is the common factor for influencing the toxicity, the steric and electrostatic descriptors are next and the hydrophobic descriptor was last. From the contour maps, the number of benzene ring is more crucial for the compound toxicity and the compounds with more benzene ring make toxicity increased. Under the same number of benzene ring, the kind of substituent group and the formed ability of H-bond are the other parameters to influencing the aromatic hydrocarbons toxicity.



2020 ◽  
Vol 124 (33) ◽  
pp. 17851-17863
Author(s):  
Guanran Zhang ◽  
Alex S. Loch ◽  
Mohammad Babazadeh ◽  
Paul L. Burn ◽  
Paul E. Shaw


2020 ◽  
Author(s):  
Tao Wang ◽  
Zhubin Hu ◽  
Xiancheng Nie ◽  
Linkun Huang ◽  
Hui Miao ◽  
...  

<p>Aggregation-induced emission (AIE) has proven to be a viable strategy to achieve highly efficient RTP in bulk by restricting molecular motions. Here we show that by utilizing triphenylamine (TPA) as an electronic donor which connects to an acceptor via an sp3 linker, six TPA-based AIE-active RTP luminophores were obtained. Both the TPA AIE-gen and the <i>sp</i><sup>3</sup>-linkage can suppress aggregation-caused quenching. Consequently, dual phosphorescence bands emitting from localized donor and acceptor triplet states, respectively, could be recorded at lowered temperatures; at room temperature, only a single RTP band corresponding to the lowest triplet state is present, presumably due to thermally assisted electronic coupling between the two states. The reported molecular construct serves as an “intermediary case” between a fully conjugated donor-acceptor system and a do-nor/acceptor binary mix, which may provide important clues on the design and control of molecular systems with complex excited-state dynamics.<br></p>



2020 ◽  
Vol 101 ◽  
pp. 109714
Author(s):  
Wei Dang ◽  
Ningbo Xie ◽  
Changfu Feng ◽  
Ying Wang ◽  
Kai Wang ◽  
...  




Sign in / Sign up

Export Citation Format

Share Document