Critical energy of initiation of a multifront detonation

1979 ◽  
Vol 15 (6) ◽  
pp. 768-775 ◽  
Author(s):  
A. A. Vasilev ◽  
Yu. A. Nikolaev ◽  
V. YU. Ul'yanitskii
1999 ◽  
Author(s):  
Ed O'Keefe ◽  
Matt Berge

2017 ◽  
Vol 68 (9) ◽  
pp. 2189-2195
Author(s):  
Valeriu V. Jinescu ◽  
Simona Eugenia Manea ◽  
George Jinescu ◽  
Vali Ifigenia Nicolof

Following the activities developed in a nuclear facility result gaseous and liquid radioactive effluents and radioactive solid waste. All these waste contain radioactive isotopes which are potentially pollutants for the environment. In the same time chemicals are, also, pollutants. According to the legislation, discharging of chemicals and radioactive liquid and gaseous effluents into the environment, should meet the requirements of the unrestricted discharge. However, what happens when several pollutants superpose: only chemical pollutants, or only radioactive pollutants, or chemical and radioactive pollutants? Such problems have been solved in this paper on the basis of the principle of critical energy.


Author(s):  
Melissa Anne-Marie Curley

For a thousand years, Japanese Buddhists cultivated vivid images of utopia in the form of the Western Paradise, but in the modern period, this utopianism became troublesome. Shinshū modernizers reinvented the Pure Land: some molded it into something the nation-state could tolerate; others used it to secure their own autonomy. Their reinterpretations encouraged new engagements with the tradition; during the war years, as the Japanese state bore down upon its citizens, thinkers with no obvious connection to Shinshū seized upon the twinned images of Shinran in exile and Amida’s Pure Land. For economist Kawakami Hajime, the Pure Land represented an inner realm of peace, the discovery of which allowed him to remain committed to Marxism through years in prison and forced seclusion. For philosopher Miki Kiyoshi, it represented the proletariat’s historical mission of liberating humanity, making Shinshū proof positive of the possibility of a proletarian religion. For historian Ienaga Saburō, it represented sheer negation of this world, grounding Shinran’s confrontation with society; Ienaga himself sought to uphold this legacy of resistance, rallying against a state that failed to live up to its ideals. These radical readings reveal that the critical energy of medieval Pure Land has not been exhausted.


Author(s):  
Yuting Luo ◽  
Zhiyuan Zhang ◽  
Fengning Yang ◽  
Jiong Li ◽  
Zhibo Liu ◽  
...  

Large-scale production of green hydrogen by electrochemical water splitting is considered as a promising technology to address critical energy challenges caused by the extensive use of fossil fuels. Although nonprecious...


Materials ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 2552 ◽  
Author(s):  
Uwe Gohs ◽  
Michael Mueller ◽  
Carsten Zschech ◽  
Serge Zhandarov

Continuous glass fiber-reinforced polypropylene composites produced by using hybrid yarns show reduced fiber-to-matrix adhesion in comparison to their thermosetting counterparts. Their consolidation involves no curing, and the chemical reactions are limited to the glass fiber surface, the silane coupling agent, and the maleic anhydride-grafted polypropylene. This paper investigates the impact of electron beam crosslinkable toughened polypropylene, alkylene-functionalized single glass fibers, and electron-induced grafting and crosslinking on the local interfacial shear strength and critical energy release rate in single glass fiber polypropylene model microcomposites. A systematic comparison of non-, amino-, alkyl-, and alkylene-functionalized single fibers in virgin, crosslinkable toughened and electron beam crosslinked toughened polypropylene was done in order to study their influence on the local interfacial strength parameters. In comparison to amino-functionalized single glass fibers in polypropylene/maleic anhydride-grafted polypropylene, an enhanced local interfacial shear strength (+20%) and critical energy release rate (+80%) were observed for alkylene-functionalized single glass fibers in electron beam crosslinked toughened polypropylene.


1982 ◽  
Vol 17 (2) ◽  
pp. 268-272 ◽  
Author(s):  
E. A. Afanas'eva ◽  
V. A. Levin

1962 ◽  
Vol 35 (1) ◽  
pp. 200-209 ◽  
Author(s):  
M. Braden ◽  
A. N. Gent

Abstract Experimental measurements are described of the growth of a cut in a stretched rubber sheet under the action of an atmosphere containing ozone. A well-defined rate of crack growth is obtained, substantially independent of the applied tensile stress when this exceeds a critical value necessary for growth to occur at all. The rate of growth is found to be similar for a number of polymers and principally determined by the ozone concentration when the mobility of the polymer molecules is sufficiently high. When the molecular mobility is inadequate, crack growth is retarded. The critical condition is found to be similar for all the polymers examined, and largely independent of the conditions of exposure; it appears to reflect an energy requirement for growth of about 40 ergs/cm2 of newly-formed surface. The effect of the degree of vulcanization and the presence of additives, including antiozonants, on these two factors has also been examined. The dialkyl-p-phenylene diamines are found to confer protection by raising the critical energy required for growth to occur, in contrast to other protective agents which affect only the rate of crack propagation.


2007 ◽  
Vol 19 (10) ◽  
pp. 1071-1115 ◽  
Author(s):  
ABDALLAH KHOCHMAN

We consider the selfadjoint operator H = H0+ V, where H0is the free semi-classical Dirac operator on ℝ3. We suppose that the smooth matrix-valued potential V = O(〈x〉-δ), δ > 0, has an analytic continuation in a complex sector outside a compact. We define the resonances as the eigenvalues of the non-selfadjoint operator obtained from the Dirac operator H by complex distortions of ℝ3. We establish an upper bound O(h-3) for the number of resonances in any compact domain. For δ > 3, a representation of the derivative of the spectral shift function ξ(λ,h) related to the semi-classical resonances of H and a local trace formula are obtained. In particular, if V is an electro-magnetic potential, we deduce a Weyl-type asymptotics of the spectral shift function. As a by-product, we obtain an upper bound O(h-2) for the number of resonances close to non-critical energy levels in domains of width h and a Breit–Wigner approximation formula for the derivative of the spectral shift function.


Sign in / Sign up

Export Citation Format

Share Document