Unsteady temperature field in solid bodies with variable heat transfer coefficient

1966 ◽  
Vol 11 (2) ◽  
pp. 151-152 ◽  
Author(s):  
V. V. Ivanov ◽  
V. V. Salomatov
2019 ◽  
Vol 108 ◽  
pp. 01003
Author(s):  
Jan Taler ◽  
Piotr Dzierwa ◽  
Magdalena Jaremkiewicz ◽  
Dawid Taler ◽  
Karol Kaczmarski ◽  
...  

Thick-wall components of the thermal power unit limit maximum heating and cooling rates during start-up or shut-down of the unit. A method of monitoring the thermal stresses in thick-walled components of thermal power plants is presented. The time variations of the local heat transfer coefficient on the inner surface of the pressure component are determined based on the measurement of the wall temperature at one or six points respectively for one- and three-dimensional unsteady temperature fields in the component. The temperature sensors are located close to the internal surface of the component. A technique for measuring the fastchanging fluid temperature was developed. Thermal stresses in pressure components with complicated shapes can be computed using FEM (Finite Element Method) based on experimentally estimated fluid temperature and heat transfer coefficient


Author(s):  
С.В. Бородкин ◽  
А.В. Иванов ◽  
И.Л. Батаронов ◽  
А.В. Кретинин

На основе уравнений теплопереноса в движущейся среде и соотношений теплопередачи в термоэлектрическом охладителе приведен сравнительный анализ методик расчета поля температуры в теплонапряженном элементе. Рассмотрены методики на основе: 1) теплового баланса, 2) среднего коэффициента теплоотдачи, 3) дифференциального коэффициента теплоотдачи, 4) прямого расчета в рамках метода конечных элементов. Установлено, что первые две методики не дают адекватного распределения поля температур, но могут быть полезны для определения принципиальной возможности заданного охлаждения с использованием термоэлектрических элементов. Последние две методики позволяют корректно рассчитать температурное поле, но для использования третьей методики необходим дифференциальный коэффициент теплоотдачи, который может быть найден из расчета по четвертой методике. Сделан вывод о необходимости комбинированного использования методик в общем случае. Методы теплового баланса и среднего коэффициента теплоотдачи позволяют определить принципиальную возможность использования термоэлектрического охлаждения конкретного теплонапряженного элемента (ТЭ). Реальные параметры системы охлаждения должны определяться в рамках комбинации методов дифференциального коэффициента теплоотдачи и конечных элементов (МКЭ). Первый из них позволяет определить теплонапряженные области и рассчитать параметры системы охлаждения, которые обеспечивают тепловую разгрузку этих областей. Второй метод используется для проведения численных экспериментов по определению коэффициента теплоотдачи реальной конструкции The article presents on the basis of the equations of heat transfer in a moving medium and the relations of heat transfer in a thermoelectric cooler, a comparative analysis of methods for calculating the temperature field in a heat-stressed element. We considered methods based on: 1) heat balance, 2) average heat transfer coefficient, 3) differential heat transfer coefficient, 4) direct calculation using the finite element method. We established that the first two methods do not provide an adequate distribution of the temperature field but can be useful for determining the principal possibility of a given cooling using thermoelectric elements. The last two methods allow us to correctly calculate the temperature field; but to use the third method, we need a differential heat transfer coefficient, which can be found from the calculation using the fourth method. We made a conclusion about the need for combined use of methods in a general case. The methods of thermal balance and average heat transfer coefficient allow us to determine the principal possibility of using thermoelectric cooling of a specific heat-stressed element. The actual parameters of the cooling system should be determined using a combination of the differential heat transfer coefficient and the finite element method. The first of them allows us to determine the heat-stressed areas and calculate the parameters of the cooling system that provide thermal discharge of these areas. The second method is used to perform numerical experiments to determine the heat transfer coefficient of a real structure


2021 ◽  
pp. 1-19
Author(s):  
Muhammad Ahmad Jamil ◽  
Talha S. Goraya ◽  
Haseeb Yaqoob ◽  
Muhammad Wakil Shahzad ◽  
Syed M. Zubair

Energies ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 704
Author(s):  
Magdalena Jaremkiewicz ◽  
Jan Taler

This paper proposes an effective method for determining thermal stresses in structural elements with a three-dimensional transient temperature field. This is the situation in the case of pressure elements of complex shapes. When the thermal stresses are determined by the finite element method (FEM), the temperature of the fluid and the heat transfer coefficient on the internal surface must be known. Both values are very difficult to determine under industrial conditions. In this paper, an inverse space marching method was proposed for the determination of the heat transfer coefficient on the active surface of the thick-walled plate. The temperature and heat flux on the exposed surface were obtained by measuring the unsteady temperature in a small region on the insulated external surface of a pressure component that is easily accessible. Three different procedures for the determination of the heat transfer coefficient on the water-spray surface were presented, with the division of the plate into three or four finite volumes in the normal direction to the plate surface. Calculation and experimental tests were carried out in order to validate the method. The results of the measurements and calculations agreed very well. The computer calculation time is short, so the technique can be used for online stress determination. The proposed method can be applied to monitor thermal stresses in the components of the power unit in thermal power plants, both conventional and nuclear.


2014 ◽  
Vol 644-650 ◽  
pp. 459-462
Author(s):  
Yao Ye ◽  
Feng Wang ◽  
Yong Hai Wu

The temperature field of cylinder liner directly affects the working process of the engine cylinder. Its research is an important research direction of the engine research. We analysis the location relationship between the cylinder liner and cooperate with the components analysis in this paper. Then the finite element model of cylinder liner component is established and boundary conditions such as gas convective heat transfer coefficient, the piston top heat transfer coefficient are analyzed. A certain type of engine cylinder liner is calculated by using ANSYS temperature field equation solvers. The model and the calculation method this article uses are of great significance for the temperature field research of other heat transfer components.


2013 ◽  
Vol 448-453 ◽  
pp. 3316-3319
Author(s):  
Chuang Sun ◽  
Yang Zhao ◽  
De Fu Li ◽  
Qing Ai ◽  
Xin Lin Xia

According to the view of heat transfer, the process of the fluid flow with high temperature and high speed over a flat plate may be considered as the heat transfer process within a compressible thermal boundary layer. Based on the numerical results of thermal isolation assumption, combining the temperature comparison with modification method, a coupled method of convection heat transfer coefficient with temperature field of the plate is established, and the characteristics of the thermal response for the flat plate is dominated. Take some ribbed plates as instances, the convection heat transfer coefficient and temperature field of the plate are simulated through the provided coupled method. The results show that, not only the position and materials of the plate influence the convection heat transfer coefficient, but also the time.


Sign in / Sign up

Export Citation Format

Share Document