Microscopic demonstration of mycoplasma contamination in cell cultures and cell culture media

1976 ◽  
Vol 1 (4) ◽  
pp. 229-232 ◽  
Author(s):  
T. R. Chen
2021 ◽  
Author(s):  
José A. Quinteros ◽  
Glenn F. Browning ◽  
Amir H. Noormohammadi ◽  
Mark A. Stevenson ◽  
Mauricio J. C. Coppo ◽  
...  

AbstractInfectious bronchitis virus (IBV), an avian coronavirus, can be isolated and cultured in tracheal organ cultures (TOCs), embryonated eggs and cell cultures. TOCs and embryonated eggs are commonly used for viral isolation but use of these is laborious and expensive. Cell cultures have been used only with IBV strains that have previously been adapted to grow under laboratory conditions, and not for primary isolation. Previous studies using the coronavirus porcine epidemic diarrhoea virus (PEDV) have suggested that foetal bovine serum (FBS), a common component of cell culture media, can inhibit the adsorption of coronaviruses onto the host cell membrane receptors. In the present study, the replication of IBV in primary chicken embryo kidney (CEK) cell cultures and the Leghorn hepatocellular carcinoma (LMH) cell line was examined using two different cell culture media, one containing FBS and the other containing yeast extract (YE). A reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) assay was used to quantify viral RNA copies in cell lysates. The highest concentrations of viral genomes were observed when the cell culture medium did not contain FBS. Examination of the infectivity of virus grown in CEK cell cultures was examined by titration in embryonated chicken eggs, demonstrating that the cell lysate from CEK cell cultures in medium without FBS contained a higher median embryo infectious dose (EID50) than that from CEK cell cultures in medium containing FBS. These results suggest that improved replication of IBV in cell cultures can be achieved by the omission of FBS from the cell culture medium. This may enhance the potential for production of vaccines in cell culture and facilitate the isolation of emergent IBV strains in cell cultures.


2015 ◽  
Vol 98 ◽  
pp. 10-17 ◽  
Author(s):  
Pani A. Apostolidis ◽  
Alice Tseng ◽  
Marie-Eve Koziol ◽  
Michael J. Betenbaugh ◽  
Barbara Chiang

Planta Medica ◽  
2016 ◽  
Vol 81 (S 01) ◽  
pp. S1-S381
Author(s):  
KB Killday ◽  
AS Freund ◽  
C Fischer ◽  
KL Colson

2021 ◽  
pp. 106811
Author(s):  
Yuanbin Guo ◽  
Ming Shi ◽  
Xiujuan Liu ◽  
Huagang Liang ◽  
Liming Gao ◽  
...  

2015 ◽  
Vol 99 (11) ◽  
pp. 4645-4657 ◽  
Author(s):  
David Reinhart ◽  
Lukas Damjanovic ◽  
Christian Kaisermayer ◽  
Renate Kunert

Antioxidants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1258
Author(s):  
Xueting Jiang ◽  
Pragney Deme ◽  
Rajat Gupta ◽  
Dmitry Litvinov ◽  
Kathryn Burge ◽  
...  

Both pro- and antiatherosclerotic effects have been ascribed to dietary peroxidized lipids. Confusion on the role of peroxidized lipids in atherosclerotic cardiovascular disease is punctuated by a lack of understanding regarding the metabolic fate and potential physiological effects of dietary peroxidized lipids and their decomposition products. This study sought to determine the metabolic fate and physiological ramifications of 13-hydroperoxyoctadecadienoic acid (13-HPODE) and 13-HODE (13-hydroxyoctadecadienoic acid) supplementation in intestinal and hepatic cell lines, as well as any effects resulting from 13-HPODE or 13-HODE degradation products. In the presence of Caco-2 cells, 13-HPODE was rapidly reduced to 13-HODE. Upon entering the cell, 13-HODE appears to undergo decomposition, followed by esterification. Moreover, 13-HPODE undergoes autodecomposition to produce aldehydes such as 9-oxononanoic acid (9-ONA). Results indicate that 9-ONA was oxidized to azelaic acid (AzA) rapidly in cell culture media, but AzA was poorly absorbed by intestinal cells and remained detectable in cell culture media for up to 18 h. An increased apolipoprotein A1 (ApoA1) secretion was observed in Caco-2 cells in the presence of 13-HPODE, 9-ONA, and AzA, whereas such induction was not observed in HepG2 cells. However, 13-HPODE treatments suppressed paraoxonase 1 (PON1) activity, suggesting the induction of ApoA1 secretion by 13-HPODE may not represent functional high-density lipoprotein (HDL) capable of reducing oxidative stress. Alternatively, AzA induced both ApoA1 secretion and PON1 activity while suppressing ApoB secretion in differentiated Caco-2 cells but not in HepG2. These results suggest oxidation of 9-ONA to AzA might be an important phenomenon, resulting in the accumulation of potentially beneficial dietary peroxidized lipid-derived aldehydes.


2021 ◽  
Author(s):  
Ayman Chmayssem ◽  
Lauriane Petit ◽  
Nicolas Verplanck ◽  
Véronique Mourier ◽  
Séverine Vignoud ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document