scholarly journals Intestinal and Hepatic Uptake of Dietary Peroxidized Lipids and Their Decomposition Products, and Their Subsequent Effects on Apolipoprotein A1 and Paraoxonase1

Antioxidants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1258
Author(s):  
Xueting Jiang ◽  
Pragney Deme ◽  
Rajat Gupta ◽  
Dmitry Litvinov ◽  
Kathryn Burge ◽  
...  

Both pro- and antiatherosclerotic effects have been ascribed to dietary peroxidized lipids. Confusion on the role of peroxidized lipids in atherosclerotic cardiovascular disease is punctuated by a lack of understanding regarding the metabolic fate and potential physiological effects of dietary peroxidized lipids and their decomposition products. This study sought to determine the metabolic fate and physiological ramifications of 13-hydroperoxyoctadecadienoic acid (13-HPODE) and 13-HODE (13-hydroxyoctadecadienoic acid) supplementation in intestinal and hepatic cell lines, as well as any effects resulting from 13-HPODE or 13-HODE degradation products. In the presence of Caco-2 cells, 13-HPODE was rapidly reduced to 13-HODE. Upon entering the cell, 13-HODE appears to undergo decomposition, followed by esterification. Moreover, 13-HPODE undergoes autodecomposition to produce aldehydes such as 9-oxononanoic acid (9-ONA). Results indicate that 9-ONA was oxidized to azelaic acid (AzA) rapidly in cell culture media, but AzA was poorly absorbed by intestinal cells and remained detectable in cell culture media for up to 18 h. An increased apolipoprotein A1 (ApoA1) secretion was observed in Caco-2 cells in the presence of 13-HPODE, 9-ONA, and AzA, whereas such induction was not observed in HepG2 cells. However, 13-HPODE treatments suppressed paraoxonase 1 (PON1) activity, suggesting the induction of ApoA1 secretion by 13-HPODE may not represent functional high-density lipoprotein (HDL) capable of reducing oxidative stress. Alternatively, AzA induced both ApoA1 secretion and PON1 activity while suppressing ApoB secretion in differentiated Caco-2 cells but not in HepG2. These results suggest oxidation of 9-ONA to AzA might be an important phenomenon, resulting in the accumulation of potentially beneficial dietary peroxidized lipid-derived aldehydes.

2021 ◽  
pp. 088391152110031
Author(s):  
Scott M Herting ◽  
Mary Beth B Monroe ◽  
Andrew C Weems ◽  
Sam T Briggs ◽  
Grace K Fletcher ◽  
...  

Implantable medical devices must undergo thorough evaluation to ensure safety and efficacy before use in humans. If a device is designed to degrade, it is critical to understand the rate of degradation and the degradation products that will be released. Oxidative degradation is typically modeled in vitro by immersing materials or devices in hydrogen peroxide, which can limit further analysis of degradation products in many cases. Here we demonstrate a novel approach for testing the cytocompatibility of degradation products for oxidatively-degradable biomaterials where the materials are exposed to hydrogen peroxide, and then catalase enzyme is used to convert the hydrogen peroxide to water and oxygen so that the resulting aqueous solution can be added to cell culture media. To validate our results, expected degradation products are also synthesized then added to cell culture media. We used these methods to evaluate the cytocompatibility of degradation products from an oxidatively-degradable shape memory polyurethane designed in our lab and found that the degradation of these polymers is unlikely to cause a cytotoxic response in vivo based on the guidance provided by ISO 10993-5. These methods may also be applicable to other biocompatibility tests such as tests for mutagenicity or systemic toxicity, and evaluations of cell proliferation, migration, or gene and protein expression.


2021 ◽  
Vol 22 (12) ◽  
pp. 6221
Author(s):  
Alisa Schnellbaecher ◽  
Anton Lindig ◽  
Maxime Le Mignon ◽  
Tim Hofmann ◽  
Brit Pardon ◽  
...  

Biomanufacturing processes may be optimized by storing cell culture media at room temperature, but this is currently limited by their instability and change in color upon long-term storage. This study demonstrates that one of the critical contributing factors toward media browning is tryptophan. LC-MS technology was utilized to identify tryptophan degradation products, which are likely formed primarily from oxidation reactions. Several of the identified compounds were shown to contribute significantly to color in solutions but also to exhibit toxicity against CHO cells. A cell-culture-compatible antioxidant, a-ketoglutaric acid, was found to be an efficient cell culture media additive for stabilizing components against degradation, inhibiting the browning of media formulations, and decreasing ammonia production, thus providing a viable method for developing room-temperature stable cell culture media.


Planta Medica ◽  
2016 ◽  
Vol 81 (S 01) ◽  
pp. S1-S381
Author(s):  
KB Killday ◽  
AS Freund ◽  
C Fischer ◽  
KL Colson

2021 ◽  
pp. 106811
Author(s):  
Yuanbin Guo ◽  
Ming Shi ◽  
Xiujuan Liu ◽  
Huagang Liang ◽  
Liming Gao ◽  
...  

2015 ◽  
Vol 99 (11) ◽  
pp. 4645-4657 ◽  
Author(s):  
David Reinhart ◽  
Lukas Damjanovic ◽  
Christian Kaisermayer ◽  
Renate Kunert

2021 ◽  
Author(s):  
Ayman Chmayssem ◽  
Lauriane Petit ◽  
Nicolas Verplanck ◽  
Véronique Mourier ◽  
Séverine Vignoud ◽  
...  

2009 ◽  
Vol 53 (10) ◽  
pp. 1226-1236 ◽  
Author(s):  
Phillip Bellion ◽  
Melanie Olk ◽  
Frank Will ◽  
Helmut Dietrich ◽  
Matthias Baum ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document