High-speed pneumatic system for measuring displacements

1965 ◽  
Vol 8 (1) ◽  
pp. 34-37
Author(s):  
A. B. Tavil'
Keyword(s):  
2007 ◽  
Vol 129 (4) ◽  
pp. 780-788 ◽  
Author(s):  
Giovanni Tani ◽  
Raffaele Bedini ◽  
Alessandro Fortunato ◽  
Claudio Mantega

This paper describes the modeling and simulation of the Z axis of a five axis machining center for high-speed milling. The axis consists of a mechanical structure: machine head and electro-mandrel, a CNC system interfaced with the feed drive, and a pneumatic system to compensate for the weight of the vertical machine head. These subsystems were studied and modeled by means of: (1) finite element method modeling of the mechanical structure; (2) a concentrated parameter model of the kinematics of the axis; (3) a set of algebraic and logical relations to represent the loop CNC-Z feed drive; (4) an equation set to represent the functioning of the pneumatic system; and (5) a specific analytical model of the friction phenomena occurring between sliding and rotating mechanical components. These modeled subsystems were integrated to represent the dynamic behavior of the entire Z axis. The model was translated in a computer simulation package and the validation of the model was made possible by comparing the outputs of simulation runs with the records of experimental tests on the machining center. The firm which promoted and financed the research now has a virtual tool to design improved machine-tool versions with respect to present models, designed by traditional tools.


2015 ◽  
Vol 2015.53 (0) ◽  
pp. _505-1_-_505-2_
Author(s):  
Kouki OKABE ◽  
Kouichi OKA ◽  
YOSIO Inoue

Author(s):  
Giovanni Tani ◽  
Raffaele Bedini ◽  
Alessandro Fortunato ◽  
Claudio Mantega

The paper describes the dynamical real-time simulation of the Z axis of a five axis machining center for high speed milling. The axis consists of a mechanical structure: machine head and electro-mandrel, a CNC Control System provided with feed drives and a Pneumatic System to compensate the weight of the entire vertical machine head. These three sub-systems have been studied and modeled by means of: • FEM modeling of the mechanical structure; • an equation set to represent the main functions of the CNC; • an equation set to represent the functioning of the Pneumatic System. These different modeling sub-systems have been integrated to obtain the entire actual dynamical behavior of the Z axis. A particular analysis was developed to represent the friction phenomena by a specific analytical model. Experimental activity was developed to test and validate the different modeling sub-systems, and other experimental tests were performed on the machining center to compare simulation outputs with experimental responses.


2015 ◽  
Vol 789-790 ◽  
pp. 901-905
Author(s):  
D. Saravanakumar ◽  
B. Mohan ◽  
T. Muthuramalingam

Servo pneumatics is a mechatronic approach that enables accurate position control of pneumatic drives with high speed. Simulation model of the servo pneumatic system with fuzzy PD controller has been created in Matlab-Simulink software using nonlinear mathematical model of the system. The influence of supply pressure and size of the cylinder on the positioning accuracy and speed has been studied. It is observed that the supply pressure is the most influencing factor in positioning accuracy and speed compared to the size parameters of the cylinders. Further a multi-response optimization of the system parameters minimize settling time, overshoot and ITAE (Integral of time-weighed absolute error) values has been carried out using Taguchi based Grey relational analysis methodology. The optimal system characteristics have been observed when supply pressure is 0.2 MPa, diameter of the cylinder is 0.05 m and length of the cylinder is 0.15 m.


Author(s):  
Mohan Bangaru ◽  
Saravanakumar Devaraj

Pneumatic systems exhibits many advantages including high speed and better efficiency. Servo pneumatic system enables the pneumatic system to be employed in varying position applications such as robots. There will be always a compromise between the speed and allowable overshoot in determining the parameters of the system based on the applications. In present research, a system comprising of two pneumatic cylinders attached to each other is used. A small cylinder which is used to for fine adjustments in accuracy is mounted on the rod end of the large cylinder which travels the coarse movement. This system reduces the overshoot of the system without much reduction in speed. Mathematical model of the system comprising of motion dynamics, pressure and temperature dynamics inside cylinder chambers and mass flow variation in the valves are derived from the physical laws and recent literature information. Based on the mathematical model, a simulation model of the system is created in the Matlab-Simulink software. A fuzzy based control system has been designed for servo position control of the system. The simulation model is validated using the experimental results. The energy efficiency of the system is computed from the overall power developed in the system and cumulative air power supplied to the system. The analysis of the dynamics of the system while tracking a sinusoidal signal is taken as a task for analyzing the energy efficiency of the system. The energy efficiency of the system has been analyzed for various sizes of cylinders, various supply pressure levels to both the cylinders in the system and various applied loads to the system. To reduce the number of experiments to be conducted, a Taguchi based design of experiments is carried out. A statistical analysis has been made for analyzing the variation of energy efficiency with the above parameters. From the study, external load affects the energy efficiency in a considerable way which has 54.39% of the overall contribution. The second dominant factor on influencing energy efficiency is supply pressure to cylinder A which has the contribution of 23.65%.


Author(s):  
E.D. Wolf

Most microelectronics devices and circuits operate faster, consume less power, execute more functions and cost less per circuit function when the feature-sizes internal to the devices and circuits are made smaller. This is part of the stimulus for the Very High-Speed Integrated Circuits (VHSIC) program. There is also a need for smaller, more sensitive sensors in a wide range of disciplines that includes electrochemistry, neurophysiology and ultra-high pressure solid state research. There is often fundamental new science (and sometimes new technology) to be revealed (and used) when a basic parameter such as size is extended to new dimensions, as is evident at the two extremes of smallness and largeness, high energy particle physics and cosmology, respectively. However, there is also a very important intermediate domain of size that spans from the diameter of a small cluster of atoms up to near one micrometer which may also have just as profound effects on society as “big” physics.


Author(s):  
N. Yoshimura ◽  
K. Shirota ◽  
T. Etoh

One of the most important requirements for a high-performance EM, especially an analytical EM using a fine beam probe, is to prevent specimen contamination by providing a clean high vacuum in the vicinity of the specimen. However, in almost all commercial EMs, the pressure in the vicinity of the specimen under observation is usually more than ten times higher than the pressure measured at the punping line. The EM column inevitably requires the use of greased Viton O-rings for fine movement, and specimens and films need to be exchanged frequently and several attachments may also be exchanged. For these reasons, a high speed pumping system, as well as a clean vacuum system, is now required. A newly developed electron microscope, the JEM-100CX features clean high vacuum in the vicinity of the specimen, realized by the use of a CASCADE type diffusion pump system which has been essentially improved over its predeces- sorD employed on the JEM-100C.


Author(s):  
William Krakow

In the past few years on-line digital television frame store devices coupled to computers have been employed to attempt to measure the microscope parameters of defocus and astigmatism. The ultimate goal of such tasks is to fully adjust the operating parameters of the microscope and obtain an optimum image for viewing in terms of its information content. The initial approach to this problem, for high resolution TEM imaging, was to obtain the power spectrum from the Fourier transform of an image, find the contrast transfer function oscillation maxima, and subsequently correct the image. This technique requires a fast computer, a direct memory access device and even an array processor to accomplish these tasks on limited size arrays in a few seconds per image. It is not clear that the power spectrum could be used for more than defocus correction since the correction of astigmatism is a formidable problem of pattern recognition.


Sign in / Sign up

Export Citation Format

Share Document