Influence of the gaseous medium and aging temperature on the gas impregnation and mechanical properties of VT23 titanium alloy

1988 ◽  
Vol 23 (6) ◽  
pp. 569-571
Author(s):  
A. I. Khorev ◽  
A. T. Pichugin ◽  
M. N. Zima ◽  
S. G. Bulgakova ◽  
I. S. Derkach
2017 ◽  
Vol 743 ◽  
pp. 264-268 ◽  
Author(s):  
Anastasia Smirnova ◽  
Yury Pochivalov ◽  
Victor Panin ◽  
Anatoly Orishich ◽  
Aleksandr Malikov ◽  
...  

The structure and mechanical properties of welded joints of VT23 titanium alloy received by method of laser welding after modifying the surface layers by ultrasonic mechanical forging (Treatment 1 and Treatment 2) were investigated. The experimental tests have revealed that the Treatment 2 provides a multiple increase in the relaxation property in fatigue life test. The formation of nonuniform distribution of vanadium, chromium and molybdenum in the welded joint increases the strength and, at the same time, the brittleness of β-phase. Mechanical treatment of the surface layers in the second mode provides a multiple increase in ductility up to 13%, in the as-received condition up to 9.9%. In consequence of plastic deformation, the β-phase intensity reduces twice with Treatment 2 which is related to its clustering. As follows from a presented data, the fatigue life of the VT23 titanium alloy has increased more than threefold.


2014 ◽  
Vol 1025-1026 ◽  
pp. 445-450 ◽  
Author(s):  
Ashwary Pande ◽  
Salil Sainis ◽  
Santhosh Rajaraman ◽  
Geetha Manivasagam ◽  
M. Nageswara Rao

A comparison between slow heating to aging temperature and direct charging at aging temperature on the microstructure and mechanical properties obtained after the aging was established for the metastable beta (β) titanium alloy Ti-15V-3Cr-3Al-3Sn. The alloy was subjected to two single aging (SA) and two duplex aging (DA) conditions, with two heating rates to aging temperature: (i) low heating rate of 5 oC/min (ii) direct charging into a furnace heated to aging temperature. The microstructure analysis was carried out using Field Emission Scanning Electron Microscopy. Mechanical Testing was carried to evaluate Ultimate Tensile Strength (UTS), 0.2% Yield Strength (YS), % Elongation (%El.), % Reduction in area (%RA) and hardness. In the case of SA samples aged at 500 °C for 8 h and 500 °C for 10 h, heating rate of 5 °C/min to aging temperature resulted in a finer microstructure but did not help in achieving better strength-ductility combination compared to direct charging. Lower rate of heating allows enough dwell time in the temperature range 250-300 oC for pre-precipitation reaction to occur which aids in fine scale precipitation of alpha phase during aging. In the case of DA samples aged at 250 oC for 24 h followed by 500 oC for 8 h and 300 oC for 10 h followed by 500 oC for 10 h, no tangible difference between lower rate of heating and direct charging was observed in mechanical properties or microstructure. This is believed to be due to the pre-aging steps 250 oC/24 h or 300 oC/10h in the two DA treatments, which create finely distributed precursors thereby leaving no scope for the heating rate to play a role.


2014 ◽  
Vol 1061-1062 ◽  
pp. 567-570
Author(s):  
Cui Ye ◽  
Fei Zhao ◽  
Fang Zhou ◽  
Ni Li ◽  
Jun Shuai Li

Microstructure and room temperature ductility of the TB6 titanium alloy was investigated by varying the aging temperature and the aging time.The results show that, the alloy’s contraction of area increases while the tensile strength firstly increases and then decreases by raising their aging temperature. In general, the ductility of the samples increases and the strength decreases with the increasing aging time. The optimum mechanical properties are obtained by aging at 650 °C for 2 h.


2010 ◽  
Vol 654-656 ◽  
pp. 586-589
Author(s):  
Yong Qing Zhao ◽  
Heng Lei Qu

As the concept of aerospace design is changed, research objectives of titanium alloys also changed from high strength to high damage tolerance. High strength, high toughness titanium alloys with damage-tolerance have been investigated under the support of a national project since 2003. TC21 titanium alloy is the first Chinese-developed high strength, high toughness and damage-tolerance titanium alloy. The mechanical property of TC21 alloy is sensitive to solution temperature and aging temperature. The rods of TC21 alloy with the diameter of 20mm and 90mm possess good mechanical properties after solution at 900°C followed by aging at 600°C.


2018 ◽  
Vol 190 ◽  
pp. 07002
Author(s):  
Wang Min ◽  
Huang Darong ◽  
Fan Ya ◽  
Nin YongQuan ◽  
Guo Hongzhen ◽  
...  

The influence of heat treatment on the microstructure and mechanical properties of TC17 titanium alloy was investigated by changing holding time before forging and aging temperature after β-forging. A better heat treatment mechanism was chosen according to its working requirements. The results showed that the holding time and aging temperature had a significant influence on microstructures and mechanical properties of TC17 alloy. With the increase of holding time before forging in the single β phase region, the original β grain size enlarge, the strength and fracture toughness decrease, and the plasticity increases. The size of lamellar α-phase bundles enlarge with the rise of aging temperature after β-forging, the orientated relationship becomes simple, and the content of β-transformation increases. And the plasticity and fracture toughness of the alloy increase, the strength and hardness decreases. The fracture toughness is better under the heat treatment mechanism at 873°C/2h +918°C/64min before forging, 800°C/4h,WC+660°C /8h AC after forging, with the high and low cycle fatigue properties meet the technical requirements.


2009 ◽  
Vol 618-619 ◽  
pp. 177-180 ◽  
Author(s):  
Xiao Xiang Wang ◽  
Wei Qi Wang ◽  
Wei Qing Li ◽  
Feng Li Li ◽  
Yu Lan Yang

The effects of solution and aging treatment on the mechanical properties of BTi-6554 alloy titanium were investigated. The results showed: As to βsolution and aging treatment, the increase of fracture toughness is quite conspicuous as the solution temperature was raised, but the change of strength and plasticity is not obvious; As to (α+β) solution and aging treatment, the decline of fracture toughness and plasticity is quite conspicuous as the solution temperature increased, but the strength increased. The strength of (α+β) solution and aging treatment is higher than that of βsolution and aging treatment, but the fracture toughness is relatively lower. As the aging temperature increased, the strength of the alloy gradually decreased, but the plasticity and fracture toughness gradually improved and the improvement of fracture toughness is quite conspicuous. A better combination of strength-toughness-ductibility could be obtained under the heat treatment as solution at 900~930 oC and aging treatment at 560~590 oC.


2021 ◽  
pp. 130476
Author(s):  
I.P. Mishin ◽  
E.V. Naydenkin ◽  
O.V. Zabudchenko ◽  
A.I. Manisheva ◽  
D.I. Bobrov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document