Apomorphine in the rat nucleus accumbens: Effects on the synthesis of 5-hydroxytryptamine and noradrenaline, the motor activity and the body temperature

1976 ◽  
Vol 38 (1) ◽  
pp. 1-8 ◽  
Author(s):  
M. Grabowska ◽  
N. -E. And�n
2001 ◽  
Vol 281 (4) ◽  
pp. R1232-R1242 ◽  
Author(s):  
Brian A. Baldo ◽  
Ann E. Kelley

Amylin, a calcitonin gene-related peptide-like peptide coreleased with insulin, exerts anorexic effects on central administration. Because previous studies revealed dense amylin binding in the nucleus accumbens (Acb), we investigated the behavioral effects of amylin infusions (10, 30, and 100 ng/side) into Acb subregions. Intra-Acb shell amylin infusions decreased ambulation, rearing, feeding, and drinking in either food-deprived rats or water-deprived rats; motor activity was affected more potently than ingestive behavior. Moreover, intra-Acb shell amylin reduced motor activity in nondeprived rats tested in the absence of food or water, indicating that the expression of amylin's effects is independent of drive or proximal incentives. Intra-Acb core amylin infusions in water-deprived rats also decreased ambulation and water intake, although anterior Acb placements were associated with smaller motor effects, regardless of Acb subregion. In contrast to amylin's effects, intra-Acb shell infusions of orexin-A (50, 100, and 500 ng/side) had no effects on motor activity, feeding, or drinking. Hence the Acb may be a target for behavioral regulation by satiety-related peptides like amylin.


1991 ◽  
Vol 38 (4) ◽  
pp. 829-835 ◽  
Author(s):  
Lisa S. Wong ◽  
Galia Eshel ◽  
Jakub Dreher ◽  
Jenny Ong ◽  
David M. Jackson

Analgesia ◽  
1995 ◽  
Vol 1 (4) ◽  
pp. 774-777
Author(s):  
Adena L. Svingos ◽  
Akiyoshi Moriwaki ◽  
Jia Bei Wang ◽  
George R. Uhl ◽  
Virginia M. Pickel

2020 ◽  
Vol 16 (1) ◽  
pp. 4-12
Author(s):  
Vandana Garg ◽  
Rohit Dutt

Background: Fever, is known as pyrexia, may occur due to infection, inflammation, or any tissue damage and disease states. Normally, the infected or damaged tissue initiates the enhanced formation of pro-inflammatory mediators like cytokines which further increases the synthesis of prostaglandin E2 (PgE2) near the hypothalamic area and thereby trigger the hypothalamus to elevate the body temperature. Objective: Antipyretics are the agents which reduce the elevated body temperature. The most commonly used antipyretic agent, paracetamol, may be fatal due to its side effects. Methods: In this review paper, Chemical Abstracts, Google Scholar, PubMed, and Science Direct were the sources for the published article to collect information regarding antipyretic activity. Results: This review compiles the antipyretic plants that may be useful to treat fever due to various diseases. Conclusion: These medicinal plants could be good alternatives for traditional allopathic antipyretics.


Author(s):  
Dr.Saurabh Parauha ◽  
Hullur M. A. ◽  
Prashanth A. S.

In Ayurveda, Jwara is not merely the concept of raised body temperature, but as is said in Charaka Samhita, 'Deha- Indriya- Manah- Santap' is the cardinal symptoms of Jwara. This can be defined as the state where the body, mind as well as sense oragans suffer due to the high temperature. Vishamajwara is a type of fever, which is described in all Ayurvedic texts. Charaka mentioned Vishamajwara and Chakrapani have commented on Vishamajwara as Bhutanubanda, Susruta affirmed that Aagantuchhanubhandohi praysho Vishamajware. Madhavakara has also recognised Vishamajwara as Bhutabhishangajanya (infected by microorganism). Vishamajwara is irregular (inconsistent) in it's Arambha (nature of onset commitment), Kriya (action production of symptoms) and Kala (time of appearance) and possesses Anushanga (persistence for long periods). The treatment of this disease depends upon Vegavastha and Avegavastha of Jwara. Various Shodhana and Shamana procedures are mentioned in classics to treat Visham Jwara.


1967 ◽  
Vol 45 (3) ◽  
pp. 321-327 ◽  
Author(s):  
David M. Ogilvie

The effects, on the body temperature of white mice, of repeated short exposures to cold were investigated using two methods of restraint. Animals held in a flattened posture became hypothermic at room temperature, cooled more than five times as fast at −10 °C as mice that could adopt a heat-conserving posture, and continued to cool for some time after they were removed from the cold. With repeated tests, cooling at room temperature decreased, and an improvement in re warming ability was observed. In addition, with lightly restrained mice, the fall in rectal temperature during cold exposure showed a progressive decrease, a phenomenon not observed with severely restrained animals.


Animals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2316
Author(s):  
Daniel Mota-Rojas ◽  
Dehua Wang ◽  
Cristiane Gonçalves Titto ◽  
Jocelyn Gómez-Prado ◽  
Verónica Carvajal-de la Fuente ◽  
...  

Body-temperature elevations are multifactorial in origin and classified as hyperthermia as a rise in temperature due to alterations in the thermoregulation mechanism; the body loses the ability to control or regulate body temperature. In contrast, fever is a controlled state, since the body adjusts its stable temperature range to increase body temperature without losing the thermoregulation capacity. Fever refers to an acute phase response that confers a survival benefit on the body, raising core body temperature during infection or systemic inflammation processes to reduce the survival and proliferation of infectious pathogens by altering temperature, restriction of essential nutrients, and the activation of an immune reaction. However, once the infection resolves, the febrile response must be tightly regulated to avoid excessive tissue damage. During fever, neurological, endocrine, immunological, and metabolic changes occur that cause an increase in the stable temperature range, which allows the core body temperature to be considerably increased to stop the invasion of the offending agent and restrict the damage to the organism. There are different metabolic mechanisms of thermoregulation in the febrile response at the central and peripheral levels and cellular events. In response to cold or heat, the brain triggers thermoregulatory responses to coping with changes in body temperature, including autonomic effectors, such as thermogenesis, vasodilation, sweating, and behavioral mechanisms, that trigger flexible, goal-oriented actions, such as seeking heat or cold, nest building, and postural extension. Infrared thermography (IRT) has proven to be a reliable method for the early detection of pathologies affecting animal health and welfare that represent economic losses for farmers. However, the standardization of protocols for IRT use is still needed. Together with the complete understanding of the physiological and behavioral responses involved in the febrile process, it is possible to have timely solutions to serious problem situations. For this reason, the present review aims to analyze the new findings in pathophysiological mechanisms of the febrile process, the heat-loss mechanisms in an animal with fever, thermoregulation, the adverse effects of fever, and recent scientific findings related to different pathologies in farm animals through the use of IRT.


Sign in / Sign up

Export Citation Format

Share Document