Two types of morphological transformation of bovine kidney cells infected in vitro with SV40

1967 ◽  
Vol 21 (1) ◽  
pp. 45-52 ◽  
Author(s):  
H. Diderholm ◽  
S. Hermodsson
2011 ◽  
Vol 92 (6) ◽  
pp. 1398-1409 ◽  
Author(s):  
Axel Mauroy ◽  
Laurent Gillet ◽  
Elisabeth Mathijs ◽  
Alain Vanderplasschen ◽  
Etienne Thiry

Bovine noroviruses belong to the family Caliciviridae, genus Norovirus. Two genotypes have been described and viruses genetically related to the Jena and Newbury2 strains have been classified into genotypes 1 and 2, respectively. In this study, virus-like particles (VLP) of the previously detected B309 Belgian strain, genetically related to genotype 2 bovine noroviruses, were used to investigate virus–host interactions in vitro. B309 VLP were shown to bind to several bovine cell lines. This binding was not affected by heparinase or chondroitinase treatment but was significantly inhibited by both sodium periodate, α-galactosidase, trypsin and phospholipase C treatment. Cell treatment by neuraminidase also moderately affected this binding. Taken together, these results show that, in addition to a galactosyl residue, sialic acid could also be involved in binding to susceptible cells. In addition, both the cholesterol-dependent pathway and macropinocytosis are used for B309 VLP internalization by Madin–Darby bovine kidney cells. The data increase the knowledge on bovine norovirus cell interactions.


Viruses ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 685
Author(s):  
Katalin Földes ◽  
Touraj Aligholipour Farzani ◽  
Koray Ergünay ◽  
Aykut Ozkul

Crimean-Congo hemorrhagic fever virus (CCHFV) causes a lethal tick-borne zoonotic disease with severe clinical manifestation in humans but does not produce symptomatic disease in wild or domestic animals. The factors contributing to differential outcomes of infection between species are not yet understood. Since CCHFV is known to have tropism to kidney tissue and cattle play an important role as an amplifying host for CCHFV, in this study, we assessed in vitro cell susceptibility to CCHFV infection in immortalized and primary kidney and adrenal gland cell lines of human and bovine origin. Based on our indirect fluorescent focus assay (IFFA), we suggest a cell-to-cell CCHF viral spread process in bovine kidney cells but not in human cells. Over the course of seven days post-infection (dpi), infected bovine kidney cells are found in restricted islet-like areas. In contrast, three dpi infected human kidney or adrenal cells were noted in areas distant from one another yet progressed to up to 100% infection of the monolayer. Pronounced CCHFV replication, measured by quantitative real-time RT-PCR (qRT-PCR) of both intra- and extracellular viral RNA, was documented only in human kidney cells, supporting restrictive infection in cells of bovine origin. To further investigate the differences, lactate dehydrogenase activity and cytopathic effects were measured at different time points in all mentioned cells. In vitro assays indicated that CCHFV infection affects human and bovine kidney cells differently, where human cell lines seem to be markedly permissive. This is the initial reporting of CCHFV susceptibility and replication patterns in bovine cells and the first report to compare human and animal cell permissiveness in vitro. Further investigations will help to understand the impact of different cell types of various origins on the virus–host interaction.


2002 ◽  
Vol 83 (2) ◽  
pp. 301-309 ◽  
Author(s):  
Cary A. Rue ◽  
Patrick Ryan

Pseudorabies virus first attaches to cells through an interaction between the envelope glycoprotein C (gC) and the cell surface heparan sulfate (HS) that is linked to proteoglycans (HSPGs). The HS-binding domain of gC is composed of three discrete heparin-binding domains (HBDs), designated HBD1, -2 and -3 for their proximity to the amino terminus of gC. Each HBD can independently mediate virus attachment to HS, yet each also exhibits a distinct binding preference for differentially sulfated derivatives of heparin. To demonstrate this, affinity columns composed of wild-type gC or mutant gC retaining a single HBD to capture several HSPGs from cultured pig and bovine kidney cells were used. The wild-type gC column bound all of the HSPGs well and, overall, bound more than 90% of the total sample applied to the column. Columns composed of either HBD2 or -3 bound intermediate amounts (40%) of the total sample applied, while the HBD1 column bound low amounts of HSPGs. HBD2 and -3 columns did not uniformly bind all of the HSPGs from bovine kidney cells, but the same HSPGs were bound with equal efficiency on each column. Thus, despite their different preferences for sulfation patterns on HS side-chains, HBD2 and -3 appear to bind the same proteoglycan cores. These results established a hierarchy of HBD2=HBD3>HBD1 in importance for HSPG binding. These in vitro-binding results correlated with the attachment phenotype of virus strains expressing gC with a single HBD in their envelopes.


Virology ◽  
1959 ◽  
Vol 8 (3) ◽  
pp. 394-396 ◽  
Author(s):  
Beverly D. Lundholm ◽  
Johannes Storz ◽  
D.G. McKercher

1960 ◽  
Vol XXXIII (II) ◽  
pp. 277-286 ◽  
Author(s):  
Weiert Velle ◽  
Stian Erichsen

ABSTRACT A review is given of previous in vitro investigations on oestrogen metabolism. In the present investigation use has been made of the tissue culture technique, whereby possible blood or serum effects on oestrogen transformations could be excluded. The conversion products were characterized by chemical methods. In the presence of bovine kidney cells grown on a medium of known composition, the following conversions were recorded: Oestrone to oestradiol-17β, oestradiol-17β to oestrone, oestradiol-17α to oestrone. Control incubations of the hormones with medium only showed that the transformations must be due to the presence of the living cells. The rate of conversion to oestrone was markedly higher for oestradiol-17β than for oestradiol-17α. As previous in vivo experiments have shown oestradiol-17α to be an important end product in the bovine, following injections of both oestrone and oestradiol-17β, the free interconvertibility of oestrone and oestradiol-17β demonstrated in the present investigation becomes significant. The findings are discussed in relation to recent observations on hormoneenzyme interrelations.


Oncology ◽  
1977 ◽  
Vol 34 (1) ◽  
pp. 16-19 ◽  
Author(s):  
G.C. Hard ◽  
Helen King ◽  
R. Borland ◽  
B.W. Stewart ◽  
Barbara Dobrostanski

Nutrients ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 1131 ◽  
Author(s):  
Federico Di Marco ◽  
Francesco Trevisani ◽  
Pamela Vignolini ◽  
Silvia Urciuoli ◽  
Andrea Salonia ◽  
...  

Pasta is one of the basic foods of the Mediterranean diet and for this reason it was chosen for this study to evaluate its antioxidant properties. Three types of pasta were selected: buckwheat, rye and egg pasta. Qualitative–quantitative characterization analyses were carried out by HPLC-DAD to identify antioxidant compounds. The data showed the presence of carotenoids such as lutein and polyphenols such as indoleacetic acid, (carotenoids from 0.08 to 0.16 mg/100 g, polyphenols from 3.7 to 7.4 mg/100 g). To assess the effect of the detected metabolites, in vitro experimentation was carried out on kidney cells models: HEK-293 and MDCK. Standards of β-carotene, indoleacetic acid and caffeic acid, hydroalcoholic and carotenoid-enriched extracts from samples of pasta were tested in presence of antioxidant agent to determine viability variations. β-carotene and indoleacetic acid standards exerted a protective effect on HEK-293 cells while no effect was detected on MDCK. The concentrations tested are likely in the range of those reached in body after the consumption of a standard pasta meal. Carotenoid-enriched extracts and hydroalcoholic extracts showed different effects, observing rescues for rye pasta hydroalcoholic extract and buckwheat pasta carotenoid-enriched extract, while egg pasta showed milder dose depending effects assuming pro-oxidant behavior at high concentrations. The preliminary results suggest behaviors to be traced back to the whole phytocomplexes respect to single molecules and need further investigations.


2019 ◽  
Vol 317 (1) ◽  
pp. F30-F42
Author(s):  
Te-Jung Lu ◽  
Wei-Chih Kan ◽  
Sung-Sen Yang ◽  
Si-Tse Jiang ◽  
Sheng-Nan Wu ◽  
...  

Liddle syndrome is an inherited form of human hypertension caused by increasing epithelial Na+ channel (ENaC) expression. Increased Na+ retention through ENaC with subsequent volume expansion causes hypertension. In addition to ENaC, the Na+-K+-Cl− cotransporter (NKCC) and Na+-Cl− symporter (NCC) are responsible for Na+ reabsorption in the kidneys. Several Na+ transporters are evolutionarily regulated by the Ste20 kinase family. Ste20-related proline/alanine-rich kinase and oxidative stress-responsive kinase-1 phosphorylate downstream NKCC2 and NCC to maintain Na+ and blood pressure (BP) homeostasis. Mammalian Ste20 kinase 3 (MST3) is another member of the Ste20 family. We previously reported that reduced MST3 levels were found in the kidneys in spontaneously hypertensive rats and that MST3 was involved in Na+ regulation. To determine whether MST3 is involved in BP stability through Na+ regulation, we generated a MST3 hypomorphic mutation and designated MST3+/− and MST3−/− mice to examine BP and serum Na+ and K+ concentrations. MST3−/− mice exhibited hypernatremia, hypokalemia, and hypertension. The increased ENaC in the kidney played roles in hypernatremia. The reabsorption of more Na+ promoted more K+ secretion in the kidney and caused hypokalemia. The hypernatremia and hypokalemia in MST3−/− mice were significantly reversed by the ENaC inhibitor amiloride, indicating that MST3−/− mice reabsorbed more Na+ through ENaC. Furthermore, Madin-Darby canine kidney cells stably expressing kinase-dead MST3 displayed elevated ENaC currents. Both the in vivo and in vitro results indicated that MST3 maintained Na+ homeostasis through ENaC regulation. We are the first to report that MST3 maintains BP stability through ENaC regulation.


1979 ◽  
Vol 36 (4) ◽  
pp. 458-461 ◽  
Author(s):  
Eun Ho Park ◽  
Sang Dai Park

A relatively simple and reliable in vitro method for marine fish chromosome study was developed. The addition of 10% chick embryo extract to serum-supplemented Eagle's minimum essential medium with high concentration of NaCl resulted in marked growth of kidney cells in the marine conger eel (Astroconger myriaster) after activation by phytohemagglutinin (PHA). Culture medium without chick embryo extract or PHA and/or with normal concentration of NaCl did not induce substantial growth. In contrast to reports by others, humidified culture was not required for excellent cell growth of these teleost kidney cells. Numerous metaphases unmarred by overlapping chromosomes were recovered and excellent karyograms were available for detailed karyotype analysis. Key words: kidney, culture, marine fish, chromosome


Sign in / Sign up

Export Citation Format

Share Document