A polyclonal antibody (anticentrin) distinguishes between two types of fibrous flagellar roots in green algae

PROTOPLASMA ◽  
1988 ◽  
Vol 144 (1) ◽  
pp. 56-61 ◽  
Author(s):  
M. Melkonian ◽  
D. Schulze ◽  
G. I. McFadden ◽  
H. Robenek
PROTOPLASMA ◽  
1991 ◽  
Vol 164 (1-3) ◽  
pp. 38-44 ◽  
Author(s):  
K. -F. Lechtreck ◽  
M. Melkonian

1980 ◽  
Vol 46 (1) ◽  
pp. 149-169
Author(s):  
M. Melkonian

The slightly anisogamous gametes of Ulva lactuca exhibit a cruciate flagellar root system consisting of 4 microtubular roots (4-2-4-2 system) and an elaborate system of fibrous roots associated with the 2-stranded microtubular roots. Two fibres (32-nm striation periodicity; system I fibres) closely underlie each of the 2-stranded roots, while different fibres (150-nm striation periodicity; system II fibres) run parallel to the root microtubules, and are 150–200 nm more internally located. Female gametes have 4 system II fibres, 3 of which are combined into a compound fibre associated with one microtubular root, while the fourth fibre is associated with the opposite root. In male gametes only 2 system II fibres are present, each underlying one of the two 2-stranded roots. A special region of the plasmalemma of both gamete types about 0.5 mum away from the basal bodies and located between 2 adjacent microtubular roots is structurally specialized and acts as a mating structure in gametic fusion. The region is oval-shaped and up to I.I mum long with a maximum diameter of 0.7 mum. A continuous electron-dense boundary layer underlies the plasmalemma at the edges of the mating structure. In both gamete types the mating structure consists of a fuzzy layer of material underlying the plasmalemma and special granules (60 nm diameter) are associated with this layer on its cytoplasmic side. In addition diffuse material overlies the mating structure, especially in male gametes. The mating structure is connected to 3 different kinds of flagellar roots: the boundary layer is linked to a 2-stranded microtubular root and its associated system I fibre; the fuzzy layer of the mating structure is connected with a system II fibre; and in female gametes this is the compound system II fibre. The ultrastructural changes which occur after mixing the 2 gamete types have been followed. Mating structure activation involves contraction of system II fibres (change of striation periodicity to 100 nm), detachment of special granules from the fuzzy layer of the mating structure and their replacement by electron-transparent vesicles at the prospective cell fusion site. Furthermore, release of electron-dense contents from Golgi-derived vesicles in the anterior part of both gamete types precedes cell fusion. Cell fusion is exclusively initiated in a region delimited by the 2 mating structures. After partial dissolution the 2 plasma membranes unite within the mating structure regions. The ultrastructure of gametic fusion in Ulva lactuca is compared to that of other green algae and the significance of flagellar roots in the mating process of green algae is discussed.


Author(s):  
L. V. Leak

Electron microscopic observations of freeze-fracture replicas of Anabaena cells obtained by the procedures described by Bullivant and Ames (J. Cell Biol., 1966) indicate that the frozen cells are fractured in many different planes. This fracturing or cleaving along various planes allows one to gain a three dimensional relation of the cellular components as a result of such a manipulation. When replicas that are obtained by the freeze-fracture method are observed in the electron microscope, cross fractures of the cell wall and membranes that comprise the photosynthetic lamellae are apparent as demonstrated in Figures 1 & 2.A large portion of the Anabaena cell is composed of undulating layers of cytoplasm that are bounded by unit membranes that comprise the photosynthetic membranes. The adjoining layers of cytoplasm are closely apposed to each other to form the photosynthetic lamellae. Occassionally the adjacent layers of cytoplasm are separated by an interspace that may vary in widths of up to several 100 mu to form intralamellar vesicles.


Author(s):  
A. E. Hotchkiss ◽  
A. T. Hotchkiss ◽  
R. P. Apkarian

Multicellular green algae may be an ancestral form of the vascular plants. These algae exhibit cell wall structure, chlorophyll pigmentation, and physiological processes similar to those of higher plants. The presence of a vascular system which provides water, minerals, and nutrients to remote tissues in higher plants was believed unnecessary for the algae. Among the green algae, the Chaetophorales are complex highly branched forms that might require some means of nutrient transport. The Chaetophorales do possess apical meristematic groups of cells that have growth orientations suggestive of stem and root positions. Branches of Chaetophora incressata were examined by the scanning electron microscope (SEM) for ultrastructural evidence of pro-vascular transport.


2020 ◽  
Vol 21 (1) ◽  
pp. 6-9
Author(s):  
Wuye Ria Andayanie

Soybean superior varieties with high yields and are resistant to abiotic stress have been largely released, although some varieties grown in the field are not resistant to SMV. In addition, the opportunity to obtain lines of hope as prospective varieties with high yield and resistance to SMV is very small. The method for evaluating soybean germplasm is based on serological observations of 98 accessions of leaf samples from SMV inoculation with T isolate. The evaluation results of 98 accessions based on visual observations showed 31 genotypes reacting very resistant or healthy to mild resistant category to SMV T isolate  with a percentage of symptom severity of 0 −30 %. Among 31 genotypes there are 2 genotypes (PI 200485; M8Grb 44; Mlg 3288) with the category of visually very resistant and resistant, respectively and  Mlg 3288  with the category of mild resistant.  They have a good agronomic appearance with a weight of 100 seeds (˃10 g) and react negatively with polyclonal antibodies to SMV, except Mlg 3288 reaction is not consistent, despite the weight of 100 seeds (˃ 10 g). Leaf samples from 98 accessions revealed various symptoms of SMV infection in the field. This diversity of symptoms is caused by susceptibility to accession, when infection occurs, and environmental factors. Keywords—: soybean; genotipe; Soybean mosaic virus (SMV); disease severity; polyclonal  antibody


2017 ◽  
Author(s):  
Evelina Sjostedt ◽  
Jens Bollerslev ◽  
Fredrik Ponten ◽  
Olivera Casar-Borota

2008 ◽  
Vol 44 (6) ◽  
pp. 74-82
Author(s):  
O. V. Sinyuk ◽  
V. V. Grubinko ◽  
P. D. Klochenko ◽  
T. A. Vasilchuk

Sign in / Sign up

Export Citation Format

Share Document