Experimental investigations of a microwave plasma generator using leaky wave structure

1988 ◽  
Vol 38 (6) ◽  
pp. 699-702
Author(s):  
M. Lubański ◽  
T. Kopiczyński ◽  
Z. Zakrzewski
Molecules ◽  
2020 ◽  
Vol 25 (7) ◽  
pp. 1558 ◽  
Author(s):  
George Mogildea ◽  
Marian Mogildea ◽  
Cristina Popa ◽  
Gabriel Chiritoi

This paper focuses on the dissociation of carbon dioxide (CO2) following the absorption processes of microwave radiation by noncontact metal wire (tungsten). Using a microwave plasma generator (MPG) with a single-mode cavity, we conducted an interaction of microwaves with a noncontact electrode in a CO2 atmosphere. High energy levels of electromagnetic radiation are generated in the focal point of the MPG’s cylindrical cavity. The metal wires are vaporized and ionized from this area, subsequently affecting the dissociation of CO2. The CO2 dissociation is highlighted through plasma characterization and carbon monoxide (CO) quantity determination. For plasma characterization, we used an optical emission spectroscopy method (OES), and for CO quantity determination, we used a gas analyzer instrument. Using an MPG in the CO2 atmosphere, we obtained a high electron temperature of the plasma and a strong dissociation of CO2. After 20 s of the interaction between microwaves and noncontact electrodes, the quantity of CO increased from 3 ppm to 1377 ppm (0.13% CO). This method can be used in space applications to dissociate CO2 and refresh the atmosphere of closed spaces.


2014 ◽  
Vol 13 (1) ◽  
Author(s):  
Bartosz Hrycak ◽  
Dariusz Czylkowski ◽  
Robert Miotk ◽  
Miroslaw Dors ◽  
Mariusz Jasinski ◽  
...  

AbstractHydrogen seems to be one of the most promising alternative energy sources. It is a renewable fuel as it could be produced from e.g. waste or bio-ethanol. Furthermore hydrogen is compatible with fuel cells and is environmentally clean. In contrast to conventional methods of hydrogen production such as water electrolysis or coal gasification we propose a method based on atmospheric pressure microwave plasma. In this paper we present results of the experimental investigations of hydrogen production from ethanol in the atmospheric pressure plasma generated in waveguide-supplied cylindrical type nozzleless microwave (2.45 GHz) plasma source (MPS). Nitrogen was used as a working gas. All experimental tests were performed with the nitrogen flow rate Q ranged from 1500 to 3900 NL h


1985 ◽  
Vol 25 (3) ◽  
pp. 149-157 ◽  
Author(s):  
A.R. Maikov ◽  
A.G. Sveshnikov ◽  
S.A. Yakunin

2019 ◽  
Vol 85 (1II)) ◽  
pp. 82-85 ◽  
Author(s):  
O. V. Pelipasov ◽  
R. A. Lokhtin ◽  
V. A. Labusov ◽  
N. G. Pelevina

It has been shown that «Grand» spectrometers based on a hybrid assembly of BLPP-2000 photodetector arrays produced by «VMK-Optoélektronika» can be used for atomic emission spectral analysis of solutions using inductively coupled plasma atomic emission spectroscopy (ICP-AES). For the prototype of a «Grand-ICP» spectrometer consisting of «Grand» spectrometer, microwave plasma generator, and RF (radiofrequency) generator, the following analytical characteristics were determined: element detection limit, long-term stability, linear ranges of calibration graphs for several elements, and optimal operating parameters of the microwave generator. The linear concentration range of analyte elements is 105when using a single analytical line of the element. The long-term stability is less than 2% in 6 h without using an internal standard. The detection limits are comparable to those of modern ICP spectrometers with an axial plasma survey and lie in a range of sub-microgram per liter. It has been found that the effect of superposition of the spectral lines of the plasma background, for example, OH molecular lines or others, on the analyte lines can be eliminated by subtracting the blank sample spectrum from the analyte spectrum using Atom software. The analytical characteristics of the spectrometer allow the use of the device both for developing new ICP- based systems and restoring the performance of defective ICP spectrometers.


2018 ◽  
Vol 23 (1) ◽  
pp. 16-22
Author(s):  
Volodymyr Volodymyrovych Perevertailo

2021 ◽  
Vol 189 ◽  
pp. 548-558
Author(s):  
Igor Vavilov ◽  
Konstantin Zharikov ◽  
Viktor Fedyanin ◽  
Pavel Yachmenev ◽  
Anton Lukyanchik ◽  
...  

Author(s):  
T V Rama Krishna ◽  
B T P Madhav ◽  
G Monica ◽  
V Janakiram ◽  
S Md Abid Basha

In this work a complex structured shorted vias microstrip leaky wave antenna is designed and analysed. A Leaky wave antenna is a travelling wave structure with complex propagation constant. When shorting vias are loaded in a periodic structure the fundamental resonant mode shows some stop band characteristics and some of the modes will strongly attenuated. Three different types of iterations are examined in this work with and without defected ground structures. The defected ground structure based leaky wave antennas are showing better performance characteristics with respect to efficiency and phase. A micro strip line feeding with impedance of 50 ohms at both ports are providing excellent impedance matching to the conducting path on the microstrip surface. The shorting vias are suppressing certain higher order frequency bands and providing excellent wide band characteristics with low loss.


1998 ◽  
Vol 13 (6) ◽  
pp. 1724-1727 ◽  
Author(s):  
H. Yagi ◽  
T. Ide ◽  
H. Toyota ◽  
Y. Mori

A microwave plasma generator, which functions under high pressure, has been developed and used in the fabrication of fine carbon particles. The plasma generator is a two-stage-type resonator, which consists of rectangular and semi-cylindrical-type resonators which are coupled in series for torching plasma and keeping it stable under high pressure. The plasma can be torched in helium gas at 3 × 106 Pa by tuning the dimensions of apparatus elements. Fine carbon particles of ~50 nm are obtained using a mixture of helium and methane gas. The particles are found to be crystalline from the results of transparent electron microscopy and diffraction analysis.


Sign in / Sign up

Export Citation Format

Share Document